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RESUMO 

 

Vários poluentes têm sido lançados na atmosfera por meio de inúmeras atividades humanas, 
entre esses estão os metais pesados (HMs), que são as principais ameaças ao meio ambiente por 
suas características potencialmente citotóxicas, genotóxicas e mutagênicas. Dentre os HM, Ni 
e Pb são elementos que podem causar fitotoxicidade, afetando o desempenho fisiológico e o 
acúmulo de biomassa. Para superar essas interferências negativas, os brassinosteróides (BRs) 
surgem como reguladores de crescimento de plantas que desempenham uma variedade de 
funções fisiológicas que também conferem resistência às plantas contra vários estresses bióticos 
e abióticos, sendo 24-epibrassnolide (EBR) um dos mais biologicamente ativos. Nesse 
contexto, o objetivo deste estudo foi verificar se a aplicação exógena de EBR pode amenizar os 
danos provocados pelo estresse induzido por metais pesados, especificamente por Ni e Pb, em 
tomateiro, avaliando as respostas bioquímicas, fisiológicas, anatômicas e nutricionais. Assim, 
dois experimentos foram planejados e executados, o primeiro analisou a ação da EBR sobre os 
efeitos deletérios do excesso de Ni (experimento I), e o segundo avaliou o papel desse esteroide 
na mitigação da toxicidade do Pb (experimento II). Os dois experimentos foram randomizados 
com quatro tratamentos cada, o experimento I com duas concentrações de níquel (0 e 400 µM 
Ni, descritos como - Ni e + Ni, respectivamente), e o experimento II também com duas 
concentrações de chumbo (0 e 200 µM Pb, descritos como - Pb e + Pb, respectivamente), foram 
utilizados em ambos os experimentos dois níveis de EBR (0 e 100 nM EBR, descritos como - 
EBR e + EBR, respectivamente). Em relação ao experimento I, os resultados mostraram que o 
EBR aliviou o estresse do Ni por meio da regulação positiva do sistema antioxidante com 
incrementos de 44%, 27%, 46% e 35% em SOD, CAT, APX e POX, respectivamente, 
auxiliando na proteção do maquinário fotossintético e estimulando o acúmulo de biomassa. Já 
para o experimento II, os resultados demonstram as interferências causadas pelo estresse de Pb 
em tomateiro, porém a aplicação exógena de EBR também mitigou os efeitos negativos, 
confirmados pela melhora na anatomia radicular com aumentos de 23%, 24% e 20% em RET, 
RDT e RMD, respectivamente, consequentemente promovendo ganhos de 95%, 115% e 92%, 
na biomassa foliar, radicular e total, respectivamente. Portanto, esta pesquisa demonstrou que 
a EBR amenizou os danos provocados pelo estresse de Ni e Pb em tomateiros. 

 

Palavras-chave: Poluente, Brassinosteróide, Dano oxidativo, Aparelho fotossintético. 

 

 

 

 

 

 

 

 

 

 



 
 

ABSTRACT 

 

Several pollutants have been released into the atmosphere through numerous human activities, 
among these are heavy metals (HMs), which are the main threats to the environment due to 
their potentially cytotoxic, genotoxic and mutagenic characteristics. Among of HM, Ni and Pb 
are elements that can cause phytotoxicity, affecting the physiological performance and biomass 
accumulation. To overcome these negative interferences, brassinosteroids (BRs) emerge as 
plant growth regulators that perform a variety of physiological functions such as growth, and 
that also confer resistance to plants against various biotic and abiotic stresses, being 24-
epibrassnolide (EBR) one of the most biologically active. In these contexts, the aim of this study 
was to verify whether the exogenous application of EBR can alleviate the damage provoked by 
heavy metals induced stress, precisely by Ni and Pb, in tomato plants, evaluating the 
biochemical, physiological, anatomical, and nutritional responses. Thus, two experiments were 
planned and executed, the first analyzed the EBR action on deleterious effects of excess Ni 
(experiment I), and the second evaluated the role of this steroid in mitigating the Pb toxicity 
(experiment II). The two experiments were randomized with four treatments each, the first with 
two concentrations of nickel (0 and 400 µM Ni, described as - Ni and + Ni, respectively), and 
the second also with two concentrations of lead (0 and 200 µM Pb, described as - Pb and + Pb, 
respectively), two levels of EBR were used in both experiments (0 and 100 nM EBR, described 
as - EBR and + EBR, respectively). Regarding experiment I, the results showed that EBR 
alleviated Ni stress through upregulating the antioxidant system, with increments of 44%, 27%, 
46% and 35% in SOD, CAT, APX and POX, respectively, assisting to protect photosynthetic 
machinery and stimulating the accumulation of biomass. While for experiment II, the results 
demonstrate the interferences caused by Pb stress in tomato plants, however the exogenous 
application of EBR also mitigated the negatives effects, confirmed by the improvement in root 
anatomy with increases of 23%, 24% and 20% in RET, RDT and RMD, respectively, 
consequently promoting gains of 95%, 115% and 92% in leaf, root and total biomass, 
respectively. Therefore, this research demonstrated that EBR alleviated the damage provoked 
by Ni and Pb stress in tomato plants. 
 

Keywords: Pollutant, Brassinosteroids, Oxidative damage, Photosynthetic apparatus.  
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CONTEXTUALIZATION 1 

In the last decade, soil heavy metal (HM) contamination has become a primary and severe 2 

problem in many regions of the world. Agricultural and urban soil contamination by HMs 3 

of natural and anthropogenic sources are being studied and received a special attention 4 

(ADIMALLA; QIAN; WANG, 2019; SONG et al., 2018). Activities such as mining, use 5 

of fertilizer and pesticides, paper and electronic industries have accounted for the release 6 

of large amounts of HMs into the natural ecosystem, possibly causing an interruption in 7 

physiological functions in biological systems (JACOB et al., 2018; TAIWO et al., 2016). 8 

HM is a general term assigned to the group of metals and metalloids that have an atomic 9 

density greater than 4 g cm-3 (EDELSTEIN; BEN-HUR, 2018; HAWKES, 1997), some 10 

of the examples of these include copper (Cu), cadmium (Cd), zinc (Zn), chromium (Cr), 11 

arsenic (As), boron (B), cobalt (Co), titanium (Ti), tin (Sn) nickel (Ni), molybdenum 12 

(Mo), mercury (Hg), lead (Pb), etc. (VARDHAN; KUMAR; PANDA, 2019). These 13 

elements can be classified in many ways, the Lewis acid classification indicates the 14 

formation of bonding in metal complexes, another way of grouping is based on their 15 

toxicity to humans and aquatic biota (AFROZE; SEN, 2018). In addition, they can be 16 

divided into two main groups: elements essential for plant growth, but toxic in excessive 17 

concentrations; and non-essential for plants and animals, where recommended and toxic 18 

concentrations are quite narrow (EDELSTEIN; BEN-HUR, 2018).  19 

Although they occur naturally and some are biologically essential, dangerous 20 

concentrations of HM can be caused by pollution emissions and the distribution these 21 

elements depends on the proximity of the emitting sources, as well as the media evaluated 22 

(VAREDA; VALENTE; DURÃES, 2019). There are different sources of HM in the 23 

environment, their natural occurrence in soil is simply a product of weathering process, 24 

however major anthropogenic sources are agriculture, industry, mining, transportation, 25 

fuel consumption, residual organic matter, and sewage water (EDELSTEIN; BEN-HUR, 26 

2018; GILL, 2014). 27 

HMs are inorganic non-biodegradable substances that tend to accumulate in living 28 

organisms and some of these are considered carcinogens (AFROZE; SEN, 2018). Like 29 

all living organisms, plants are often sensitive to inappropriate amounts of heavy metals, 30 

being strongly harmful to the metabolic activities at higher concentrations, become a 31 

critical environmental concern due to their widespread occurrence and their acute and 32 

chronic toxic effect on plants grown (NAGAJYOTI; LEE; SREEKANTH, 2010). 33 
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Unlike several HM, such as Cd, Cr and Hg, that have no biological function in plant 34 

(SEREGIN; KOZHEVNIKOVA, 2006), Ni is considered an essential element for plant 35 

growth and development, being a component of several enzymes, like urease and 36 

glyoxalase-I, significantly contributing to nitrogen assimilation (DRĄŻKIEWICZ; 37 

BASZYŃSKI, 2010; SHAHZAD et al., 2018). This element is incredibly important for 38 

plant nutrition, however, due to be required in small amounts, at high concentration, it 39 

becomes toxic for plants (HASSAN et al., 2019; SREEKANTH et al., 2013). 40 

Ni is a trace metal which is extensively disseminated in the environment through both 41 

natural and anthropogenic sources (AMEEN et al., 2019; SREEKANTH et al., 2013), 42 

being released into the environment through various human activities like industries, 43 

burning of fossil fuels, application of phosphatic fertilizers, smelting, sludge water, 44 

electroplating industries, and vehicle emissions (HASSAN et al., 2019; SHAHZAD et 45 

al., 2018). One of the aspects of this metal is to be uniformly distributed through the soil 46 

profile, but usually, its concentration is high at soil surface due to the deposition of 47 

industrial waste and agricultural activities (HASSAN et al., 2019; YUSUF et al., 2011). 48 

An accumulation beyond the beneficial Ni window can cause toxicity, affecting various 49 

physico-biochemical processes, including mineral absorption, photosynthesis, membrane 50 

permeability, nitrogen metabolism, and senescence in plants (KÜPPER; ANDRESEN, 51 

2016; MIR et al., 2018; SIRHINDI et al., 2016). Kumar and Prasad (2015) presents 52 

reports that higher Ni concentrations disturb physiological and biochemical processes in 53 

the plant, which include reduced growth (MOLAS, 2002), photosynthesis and water 54 

relationships (CHEN, C.; HUANG; LIU, 2009), alteration of enzymatic activities 55 

(GAJEWSKA et al., 2006), interference with the uptake and translocation of others 56 

nutrients (CHEN, Cuiyun; HUANG; LIU, 2009) and causes initiation of oxidative 57 

damage, through increase in lipid peroxidation products, membrane permeability and 58 

chlorophyll degradation (CHEN, Cuiyun; HUANG; LIU, 2009; GAJEWSKA et al., 59 

2012), as a result negatively affect the crop yield and quality (GAJEWSKA et al., 2006). 60 

Among HM, Pb is a naturally occurring non-biodegradable, non-essential metal and 61 

considered one of major pollutant substances for all living organisms (KHAN et al., 62 

2018). This element is one of the most widely distributed trace metals, has become 63 

ubiquitous in the soil and in the environment due to natural deposits and increasing human 64 

activities, such as mining, smelting, fuel combustion, synthetic fertilizers, and various 65 

industrial processes: building construction, Pb-acid batteries, bullets and shot, solder, 66 
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pewter, and fusible alloys (FAHR et al., 2013; MUKAI et al., 2001). The extensive use 67 

Pb in many industries is mainly due to its low melting point, high density, ease of casting, 68 

acid resistance, ease of fabrication and chemical stability in the environment (KUMAR, 69 

Abhay; PRASAD, 2018). 70 

Pb is a type of phytotoxic element and different plants response processes depends on the 71 

plant's genotype and physiological characteristics. Several studies indicate that this metal 72 

in general adversely affects plants morpho-physiological and biochemical processes such 73 

as seed germination and seedling growth, plant phenology, and root/shoot ratio; disrupts 74 

cell membrane permeability, photosynthesis, plant respiratory processes, chlorophyll 75 

contents, chloroplastic lamellar organization and cell division; and cause growth and 76 

developmental abnormalities as well as ultrastructure changes (ASHRAF et al., 2015; 77 

GUPTA; HUANG; CORPAS, 2013). 78 

By acting as an active non-redox molecule, Pb alters this redox balance through the 79 

different indirect mechanisms like replacement of essential cations from cellular 80 

biomolecules and alteration of metal containing enzymes activities, which enhances the 81 

generation of ROS (CHEN, Q. et al., 2017; KUMAR, Abhay; PRASAD, 2018; SHU et 82 

al., 2012). Thus, Pb exposure can induce the accumulation of singlet oxygen (O2
-) and 83 

hydrogen peroxide (H2O2), causing changes membrane structure and function, starting 84 

lipid peroxidation (KUMAR, Abhay; PRASAD; SYTAR, 2012), hence resulting in 85 

oxidative damages to membrane lipids, proteins, chloroplast pigments, enzymes and 86 

nucleic acids (SRIVASTAVA et al., 2014).  87 

Moreover, imbalance in the uptake, assimilation, and translocation of nutrients result of 88 

Pb excess interfering in the permeability of the plasma membrane and influencing the 89 

processes involved in the transfer of these elements across the root membrane (KHAN et 90 

al., 2018). Photosynthesis is impaired through a series of processes affected by Pb 91 

toxicity, such as disruption photosynthetic pigments synthesis, injury of chloroplast 92 

ultrastructure, changes in lipid and protein composition of thylakoid membrane, restricted 93 

electron transport, inhibited activities of Calvin cycle enzymes, besides deficiency of CO2 94 

in result of stomatal closure (AHMAD et al., 2011; ALI; NAS, 2018).  95 

In this context, the exogenous application of BRs emerges as a strategy to stimulate plant 96 

resilience since these substances are involved in the regulation of several physiological 97 

processes, such as the activation of antioxidant enzymes and protection of the 98 

photosynthetic apparatus, providing tolerance in environmental stress (DIVI; KRISHNA, 99 
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2009; FARIDUDDIN et al., 2014). A study using Brassica napus pollen extract, 100 

identified BRs as the most active growth promoter discovered, showing increases in stem 101 

elongation and cell division in bean internodes (MITCHELL et al., 1970), and so it was 102 

prematurely concluded that BRs are specific translocable organic compounds isolated 103 

from a plant that allowed a measurable growth control when applied in minimal amounts 104 

in another plant (CLOUSE, 2011; OKLESTKOVA et al., 2015). In responses to HM 105 

stress, some studies report BRs can regulate the uptake of ions into the plant cells and can 106 

be used to reduce the accumulation of these metals, through regulating the electrical 107 

characteristics of membranes, cell membrane permeability and ion transport 108 

(AHAMMED et al., 2020; DALYAN; YÜZBAŞIOĞLU; AKPINAR, 2018). Moreover, 109 

this steroid also increase the activities of some antioxidant enzymes detoxifying the 110 

increased production of reactive oxygen species (ROS) generated by heavy metal stress 111 

(VÁZQUEZ et al., 2013; XIA et al., 2009). 112 

BR correspond to a group of natural steroidal lactones/ketones that are profusely 113 

distributed in the plant kingdom that initially, were considered as plant growth regulators 114 

compounds, but now are established as the sixth plant hormone class. (BAJGUZ, 2011; 115 

KANWAR et al., 2017). Among all isolated and characterized, Brassinolide (BL), 24-116 

epibrassinolide (24-EBL) and 28-homobrassinolide (28-HBL) are the main bioactive BRs 117 

(JOO et al., 2015; VARDHINI; ANJUM, 2015), being reported to be associated with a 118 

wide range of biological responses, regulating physiological and developmental 119 

processes, such as cell elongation (stem, root), leaf expansion, photomorphogenesis, 120 

flower developmental processes, male sterility, stomatal developmental processes, and 121 

resistance to stress (ANWAR et al., 2018; NAWAZ et al., 2017). 122 

To better assimilate the action of this steroid on heavy metals, specifically Ni and Pb, 123 

tomato (Solanum lycopersicum L.) plants were used in this research because this species 124 

has been considered the best model organism for fleshy-fruited plants to be used in basic 125 

or applied research (MAIA; SILVA; LOBATO, 2018; SURESH et al., 2014). Tomato 126 

stands out for having sequenced and small genome (THE TOMATO GENOME 127 

CONSORTIUM.; INSTITUTE.; SATO, 2012), a short life cycle and specific 128 

morphological traits that are not shared with other model plants (GERSZBERG et al., 129 

2015), besides being able to be cultivated in different conditions, be propagated asexually 130 

by grafting, or regenerated from distinct parts of the plant, and to grow in space limited 131 

with controlled conditions, like a greenhouse (FLORES et al., 2016). 132 
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Our hypothesis considers the negative interferences that Ni and Pb toxicity can causes in 133 

antioxidant metabolism, gas exchange, photosynthetic pigments, including the ROS 134 

overproduction, resulting in severe oxidative damages (JAHAN et al., 2020; KUMAR, 135 

Abhay; PRASAD, 2018) and inhibition of photosynthesis (ALI; NAS, 2018; 136 

SREEKANTH et al., 2013). In other hand, diverse studies are demonstrating the potential 137 

of BR in ameliorates of heavy metal stress in plants (RIBEIRO et al., 2020; ZHONG et 138 

al., 2020), however due to some processes performed by this steroid on heavy metal stress 139 

are still unclear, further research is needed. Thus, the aim of this study was to verify 140 

whether the exogenous application of EBR can alleviate the damage provoked by heavy 141 

metals induced stress oxidative, precisely by Ni and Pb, in tomato plants, evaluating the 142 

biochemical, physiological, anatomical, and nutritional responses. 143 

144 
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Abstract
Soil contamination by toxic heavy metals (HMs) represents a serious global ecological problem. Among the HMs often 
verified in agricultural soils, nickel (Ni) excess can cause phytotoxicity, affecting essential anatomical structures and pho-
tochemical reactions connected to the photosynthetic apparatus. 24-Epibrassinolide (EBR) is an environmentally friendly 
plant growth regulator in which this natural steroid can stimulate plant metabolism. The experiment was randomized with 
four treatments: two nickel concentrations (0 and 400 µM Ni, described as − Ni and + Ni, respectively) and two EBR con-
centrations (0 and 100 nM EBR, described as − EBR and + EBR, respectively). The objective of this research was to evalu-
ate whether exogenously applied 24-epibrassinolide can mitigate oxidative damage against the photosynthetic apparatus 
in tomato leaves under excess Ni and to evaluate the leaf structures, stomatal variables, reactive oxygen species (ROS), 
antioxidant enzymes and nutritional status. The results proved that EBR alleviated Ni stress by protecting the photosynthetic 
machinery, upregulating the antioxidant system, improving leaf anatomy and favouring stomatal performance. This steroid 
relieves Ni-induced oxidative stress, stimulating superoxide dismutase (44%), ascorbate peroxidase (46%) and peroxidase 
(35%), which are enzymes involved in ROS detoxification. In addition, exogenous EBR alleviates oxidative damage against 
the photosynthetic apparatus, promoting increases in the effective quantum yield of PSII photochemistry (33%), photochemi-
cal quenching (20%) and electron transport rate (33%). In parallel, this steroid triggered improvements in leaf anatomy and 
stomatal performance that resulted in increases in net photosynthetic rate (52%) and water-use efficiency (29%). Simultane-
ously, the multiple functions of this steroid in the antioxidant system, photosynthetic machinery, gas exchange and anatomi-
cal characteristics worked towards the amelioration of nutritional status and to increase the biomass verified in our results. 
Therefore, this research demonstrated that EBR alleviated the negative interferences caused by Ni stress in tomato plants.

Keywords Brassinosteroids · Environmental contamination · Photosynthesis · Solanum lycopersicum · Stomatal density · 
Superoxide dismutase
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EBR  24-Epibrassinolide
EDS  Equatorial diameter of the stomata
EL  Electrolyte leakage
ETAb  Epidermis thickness from abaxial leaf side
ETAd  Epidermis thickness from adaxial leaf side
ETR  Electron transport rate
ETR/PN  Ratio between the apparent electron transport 

rate and net photosynthetic rate
EXC  Relative energy excess at the PSII level
F0  Minimal fluorescence yield of the dark-

adapted state
Fe  Iron
Fm  Maximal fluorescence yield of the dark-

adapted state
Fv  Variable fluorescence
Fv/Fm  Maximal quantum yield of PSII 

photochemistry
gs  Stomatal conductance
HMs  Heavy metals
H2O2  Hydrogen peroxide
LDM  Leaf dry matter
MDA  Malondialdehyde
Mn  Manganese
Ni  Nickel
NiCl2  Nickel chloride
NPQ  Nonphotochemical quenching
O2

−  Superoxide anion
P  Phosphorus
PDS  Polar diameter of the stomata
PN  Net photosynthetic rate
PN/Ci  Instantaneous carboxylation efficiency
POX  Peroxidase
PPT  Palisade parenchyma thickness
PSII  Photosystem II
qP  Photochemical quenching
RCT   Root cortex thickness
RET  Root epidermis thickness
RDM  Root dry matter
RDT  Root endodermis thickness
RMD  Root metaxylem diameter
ROS  Reactive oxygen species
S  Sulphur
SD  Stomatal density
SDM  Stem dry matter
SF  Stomatal functionality
SI  Stomatal Index
SOD  Superoxide dismutase
SPT  Spongy parenchyma thickness
TDM  Total dry matter
Total Chl  Total Chlorophyll
VCD  Vascular cylinder diameter
WUE  Water-use efficiency

Zn  Zinc
ΦPSII  Effective quantum yield of PSII 

photochemistry

Introduction

Tomato (Solanum lycopersicum L.) is currently one of the 
most cultivated and consumed vegetables worldwide, as 
well as the best model organism for fleshy-fruited plants 
to be used in basic or applied research due to its sequenced 
and small genome (The Tomato Genome Consortium et al. 
2012), short life cycle, photoperiod insensitivity, and specific 
morphological traits that are not shared with other model 
plants (Gerszberg et al. 2015). Furthermore, tomato can be 
cultivated under different conditions, propagated asexually 
by grafting, regenerated from distinct parts of the plant, and 
is able to grow in space limited to controlled conditions, 
such as a greenhouse (Flores et al. 2016).

Environmental stresses, especially soil contamination by 
toxic heavy metals (HMs), represent a serious global ecolog-
ical problem. Soil contamination by Nickel (Ni) can be natu-
ral, such as weathering of ultrabasic igneous rocks (Yusuf 
et al. 2011) and anthropogenic activities, including fossil 
fuel burning, metallurgical, electrical and electronics indus-
tries, chemical and food industry, inadequate utilizations of 
agricultural sewage sludge, organic and mineral fertilizers 
(Nie et al. 2015; Khaliq et al. 2016), negatively impacting 
the crop yield. Ni excessive levels can cause phytotoxic-
ity, affecting growth and development, restricting nutrient 
absorption, destroying the photosystem and membrane 
integrity (Yusuf et al. 2011), interfering with chloroplast 
structures (Hermle et al. 2007) and decreasing chlorophyll 
biosynthesis (Seregin and Kozhevnikova 2006). The toxic 
effect of Ni can result in plant nutrient deficiency by consid-
erably inhibiting the absorption and translocation of some 
nutrients, such as Cu, Zn and Mn (Valivand et al. 2019; 
Jahan et al. 2020). In the same way, high Ni concentrations 
increase ROS overproduction, leading to oxidative stress 
(Turan et al. 2018), consequently decreasing the supply of 
electrons in the electron transport chain during photosyn-
thesis, combined with damage to lipids, proteins and DNA 
(Küpper and Andresen 2016; Sirhindi et al. 2016).

In leaves, excess Ni causes chlorosis and necrosis, 
inhibiting several physiological processes, such as pho-
tosynthesis and transpiration (Kanwar et al. 2012; Küpper 
and Andresen 2016; Abd Allah et al. 2019). Ni toxic-
ity can trigger damage to thylakoid structures, decreas-
ing ribulose-1,5-bisphosphate carboxylase/oxygenase 
(RuBisCO) activity, limiting chlorophyll biosynthesis 
and inducing stomatal closure, which are deleterious 
effects intrinsically related to the photosynthesis process 
(Molas 2002; Sreekanth et al. 2013; Hassan et al. 2019). 
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In parallel, excess Ni often promotes disorders of meso-
philic cells and epidermal tissues, consequently reduc-
ing epidermal cell size and leaf area (Yusuf et al. 2011). 
These negative interferences lead to disturbance of the 
photosynthetic apparatus (Hassan et al. 2019). However, 
the damage intensities occasioned by Ni on photosyn-
thetic capacity depend on the plant species and pheno-
logical stage, Ni concentration and exposure time of the 
plant to heavy metals (Drążkiewicz and Baszyński 2010; 
Chen et al. 2009).

Several studies have been carried out aiming to find 
strategies to stimulate plant resilience in situations of envi-
ronmental stress, including the use of plant growth regula-
tors that can be applied exogenously, such as brassinoster-
oids (BRs), considered a promising alternative. BRs are a 
group of polyhydroxy steroids found in plant tissues and 
were first isolated from Brassica napus pollen (Mitchell 
et al. 1970; Fridman and Savaldi-Goldstein 2013). These 
steroids are environmentally friendly, connected to stimu-
lation of plant metabolism and involved in the mitigation 
of several environmental stresses (Hussain et al. 2019). 
Among the various BRs identified, 24-epibrassinolide 
(EBR) is one of the most biologically active (Azhar et al. 
2017), maximizing biomass accumulation, gas exchange 
and defence mechanisms (Hussain et al. 2020). More spe-
cifically, BRs have achieved prominence for their potential 
to regulate, under stress conditions, several physiological 
processes, including chloroplast synthesis, stomatal move-
ment, root morphology, photosynthesis and antioxidant 
enzymes (Wei and Li 2016; Sanjari et al. 2019; Ahammed 
et al. 2020), promoting tolerance to various abiotic factors, 
including heavy metals (Nawaz et al. 2017; Kour et al. 
2021).

The hypothesis of this research takes into account the 
negative interference that excess Ni provokes in several 
metabolic processes, including ROS overproduction 
and inhibition of light capture and carbon dioxide fixa-
tion (Sreekanth et al. 2013; Jahan et al. 2020). Tomato 
plants were used because this species is considered an 
ideal dicotyledonous model to investigate physiological 
phenomena (Carvalho et al. 2011; Gerszberg et al. 2015). 
On the other hand, pretreatment with EBR reduced the 
photoinhibition in young Eucalyptus urophylla plants 
exposed to excess Ni (Ribeiro et al. 2020) and attenu-
ated the damage generated by Mn stress in Glycine max 
plants, contributing to the maintenance of chloroplastic 
pigments (Rodrigues et al. 2020). Therefore, the aim of 
this research was to evaluate whether exogenously applied 
24-epibrassinolide can mitigate oxidative damage against 
the photosynthetic apparatus in tomato leaves under excess 
Ni and to evaluate the leaf structures, stomatal variables, 
reactive oxygen species (ROS), antioxidant enzymes and 
nutritional status.

Materials and Methods

Location and Growth Conditions

The experiment was performed at the Universidade Federal 
Rural da Amazônia, Paragominas, Brazil (2°55ʹ S, 47°34ʹ 
W). The study was conducted in a greenhouse with tempera-
ture and humidity controlled. The minimum, maximum and 
median temperatures were 24.1, 30.5 and 25.8 °C, respectively. 
The relative humidity during the experimental period varied 
between 60 and 80%.

Plants, Containers and Acclimation

Seeds of Solanum lycopersicum L. cv Santa Clara were germi-
nated using vegetable substrate and transplanted on the 13th 
day into 1.2-L pots filled with a mixed substrate of sand and 
vermiculite at a ratio of 3:1. Plants were cultivated under semi-
hydroponic conditions containing 500 mL of nutritive solu-
tion. A modified Hoagland and Arnon (1950) solution was 
used as a source of nutrients; the ionic strength started at 50% 
and was modified to 100% after 2 days.

Experimental Design

The experiment was randomized with four treatments: two 
with nickel concentrations (0 and 400 µM Ni, described as − Ni 
and + Ni, respectively) and two concentrations of 24-epibrassi-
nolide (0 and 100 nM EBR, described as − EBR and + EBR, 
respectively). Five replicates for each of the four treatments 
were conducted, yielding 20 experimental units used in the 
experiment, with three plants in each experimental unit. EBR 
level was defined in agreement with Maia et al. (2018) and Ni 
concentrations were chosen based on research of Ribeiro et al. 
(2020) and Saraiva et al. (2021).

24‑Epibrassinolide (EBR) Preparation 
and Application

Fifteen-day-old seedlings were sprayed with 24-epibrassi-
nolide (EBR) or Milli-Q water (containing a proportion of 
ethanol that was equally used in preparation of the EBR solu-
tion) for 20 days (Days 15–35 after the start of the experiment), 
and this steroid was applied at intervals of five days. EBR (0 
and 100 nM, Sigma-Aldrich, USA) solutions were prepared 
by dissolving the solute in ethanol followed by dilution with 
Milli-Q water [ethanol:water (v/v) = 1:10,000] (Ahammed 
et al. 2013).
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Plant Nutrition and Ni Excess

Plants received the following macro- and micronutrients 
contained in the nutrient solution in agreement with Pereira 
et al. (2019). To simulate excess Ni,  NiCl2 was used at con-
centrations of 0 and 400 µM Ni and was applied over 10 days 
(Days 25–35 after the start of the experiment). During the 
study, the pH of the nutrient solution was adjusted daily 
to 5.5. Thirty-five-day-old plants were used to measure the 
physiological and morphological parameters, and leaf, stem 
and root tissues were harvested for anatomical, biochemical 
and nutritional analyses.

Measurement of Chlorophyll Fluorescence and Gas 
Exchange

Chlorophyll fluorescence was measured in fully expanded 
leaves under light using a modulated chlorophyll fluorometer 
(model OS5p; Opti-Sciences), with equipment calibration 
described by Lobato et al. (2021). Gas exchange was evalu-
ated in all plants and measured in the expanded leaves in 
the middle region of the plant using an infrared gas analyser 
(model  LCPro+; ADC BioScientific) in a chamber under 
constant  CO2 (twelve-g  CO2 cylinder), photosyntheti-
cally active radiation, air-flow rate and temperature condi-
tions at 450 μmol  mol−1  CO2, 800 μmol photons  m−2  s−1, 
300 µmol  s−1 and 28 °C, respectively, between 10:00 and 
12:00 h. The water-use efficiency (WUE) was estimated 
according to Ma et al. (2004) and the instantaneous carbox-
ylation efficiency (PN/Ci) was calculated using the formula 
described by Aragão et al. (2012).

Anatomical Measurements

Samples were collected from the middle region of the  2nd 
leaflet inserted in third node and roots 5 cm from the root 
apex. Subsequently, all collected botanical material was 
immersed in 70% (v/v) fixation solution (formaldehyde at 
37%, acetic acid and ethanol at 70% in proportions of 0.5, 
0.5 and 9.0, respectively) for 24 h, dehydrated in ethanol 
and embedded in historesin Leica™ (Leica, Nussloch, Ger-
many). Transverse sections with a thickness of 5 μm were 
obtained with a rotating microtome (model Leica RM 2245, 
Leica Biosystems) and stained with toluidine blue (O’Brien 
et al. 1964). For stomatal characterization, the epidermal 
impression method was used according to Segatto et al. 
(2004). The slides were observed and photomicrographed 
under an optical microscope (Motic BA 310; Motic Group 
Co. LTD.) coupled to a digital camera (Model Motic 2500; 
Motic Group Co., LTD.). The images were analysed with a 
Moticplus 2.0 previously calibrated with a micrometer slide 
from the manufacturer. The anatomical parameters evaluated 
were as follows: the polar diameter of the stomata (PDS), 

the equatorial diameter of the stomata (EDS), the epidermis 
thickness from the adaxial leaf side (ETAd), the epidermis 
thickness from the abaxial leaf side (ETAb), the palisade 
parenchyma thickness (PPT), the spongy parenchyma thick-
ness (SPT) and the PPT/SPT ratio. For both leaf faces, the 
stomatal density (SD) was calculated as the number of sto-
mata per unit area, and the stomatal functionality (SF) was 
calculated as the PDS/EDS ratio, as described by Castro 
et al. (2009). The stomatal index (SI) was calculated as the 
percentage of stomata in relation to total epidermal cells 
by area. In the root samples, the root epidermis thickness 
(RET), root endodermis thickness (RDT), root cortex thick-
ness (RCT), vascular cylinder diameter (VCD) and root 
metaxylem diameter (RMD) were measured.

Enzymatic Assays and Superoxide Anion

Extraction was performed using 500 mg plant material 
homogenized with 5 ml of extraction buffer [50 mM phos-
phate buffer (pH 7.6), 1.0 mM ascorbate and 1.0 mM EDTA] 
and subsequently centrifuged at 14,000×g for 4 min at 3 °C. 
Finally, the supernatant was collected (Badawi et al. 2004). 
In determinations, superoxide dismutase (SOD) activity 
was measured with 0.2 ml supernatant and 2.8 ml reaction 
mixture [50 mM phosphate buffer (pH 7.6), 0.1 mM EDTA, 
13 mM methionine (pH 7.6), 75 μM NBT and 4 μM ribofla-
vin], expressed in units of  mg−1 protein (Giannopolitis and 
Ries 1977). Catalase (CAT) activity was evaluated using 
0.2 ml of supernatant and 1.8 ml of reaction mixture [50 mM 
phosphate buffer (pH 7.0) and 12.5 mM hydrogen perox-
ide], presented in μmol  H2O2  mg−1 protein  min−1 (Havir 
and McHale 1987). Ascorbate peroxidase (APX) activity 
was determined with 0.2 ml of supernatant and 1.8 ml of 
reaction mixture [50 mM phosphate buffer (pH 7.0), 0.5 mM 
ascorbate, 0.1 mM EDTA and 1.0 mM hydrogen peroxide], 
expressed in μmol AsA  mg−1 protein  min−1 (Nakano and 
Asada 1981). Peroxidase (POX) activity was measured 
using 0.2 ml of supernatant and 1.78 ml of a reaction mix-
ture [50 mM phosphate buffer (pH 7.0) and 0.05% guaiacol 
and 20 μl of 10 mM hydrogen peroxide] presented in μmol 
tetraguaiacol  mg−1 protein  min−1 (Cakmak and Marschner 
1992). Superoxide anion  (O2

−) was determined using 1 ml 
of supernatant extracted above and incubated with a reac-
tion mixture [30 mM phosphate buffer (pH 7.60), 0.51 mM 
hydroxylamine hydrochloride, 17 mM sulfanilamide, 7 mM 
α-naphthylamine and ethyl ether] (Elstner and Heupel 1976). 
Total soluble proteins were analysed using the methodology 
described by Bradford (1976).

Determining of Ni and Nutrients

Milled samples (100 mg) of root, stem and leaf tissues were 
predigested using conical tubes (50 ml) with 2 ml of sub 
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boiled  HNO3. Subsequently, 8 ml of a solution containing 
4 ml of  H2O2 (30% v/v) and 4 ml of ultra-pure water were 
added and transferred to a Teflon digestion vessel in agree-
ment with (Paniz et al. 2018). The determination of Ni, P, 
S, Ca, Mn, Cu and Zn was carried out using an inductively 
coupled plasma mass spectrometer (model ICP-MS 7900; 
Agilent). All found values were in agreement with certified 
values (NIST 1570a and NIST 1577c).

Stress Indicators, Chloroplastic Pigments 
and Biomass

Stress indicators were extracted using 500 mg of fresh mate-
rial and 5 ml of 5% (w/v) trichloroacetic acid and subse-
quently centrifuged at 15,000×g for 15 min at 3 °C to collect 
the supernatant (Wu et al. 2006). Hydrogen peroxide  (H2O2) 
was measured with 0.2 ml of supernatant and 1.8 ml of 
reaction mixture [2.5 mM potassium phosphate buffer (pH 
7.0) and 500 mM potassium iodide] (Velikova et al. 2000). 
Malondialdehyde (MDA) was determined using 0.5 ml of 
supernatant and 1 ml of the reaction mixture (0.5% (w/v) 
thiobarbituric acid in 20% trichloroacetic acid) based on the 
methodology of Cakmak and Horst (1991). Electrolyte leak-
age (EL) was performed according to the protocol described 
by Gong et al. 1998). Photosynthetic pigments chlorophyll 
a (Chl a), chlorophyll b (Chl b), carotenoid (Car) and total 
chlorophyll (total Chl) were extracted with 40 mg of leaf 
tissue homogenized in 8 ml of 90% methanol (Lichtenthaler 
and Buschmann 2001). The biomass of roots, stems and 
leaves was measured based on constant dry weights (g) after 
drying in a forced-air ventilation oven at 65 °C.

Data Analysis

The normality of residues was verified with the Shap-
iro–Wilk test. Data were subjected to one-way ANOVA, and 
significant differences between the means were determined 
using the Scott–Knott test at a probability level of 5% (Steel 
et al. 2006). Standard deviations were calculated for each 
treatment. Statistical analysis of the data was performed 
using R™ software (Venables et al. 2021).

Results

EBR Minimized the Ni Contents in Plants Exposed 
to Excess Ni

Plants subjected to 400 µM Ni treatment presented increases 
in Ni content in their tissues (Table 1). However, the treat-
ment with EBR (100 nM) promoted root, stem and leaf 
decreases of 8%, 14% and 23%, respectively, in comparison 
with the treatment with Ni without EBR.

Pretreatment with EBR Promoted Protection 
Against Excess Ni in Roots and Leaves

RET, RDT, RCT, VCD and RMD values decreased in plants 
exposed to excess Ni (Table 2; Fig. 1). However, plants 
treated with EBR and exposed to Ni stress had increases 
of 26%, 10% and 4% in RET, RDT and RMD, respectively, 
when compared to the same treatment without EBR. On 
leaf structures, excess Ni clearly caused deleterious effects 
(Table 2; Fig. 1). The application of EBR induced decreases 
in ETAd, ETAb and SPT of 6%, 18% and 8%, respectively, 
relative to the treatment with Ni and in the absence of EBR.

Steroids Favoured Nutritional Balance and Metal 
Homeostasis

The stress caused by Ni decreased the macronutrients and 
micronutrients, while the application of EBR increased the 
nutrient contents in the evaluated tissues (Table 3). For root 
tissue, the increases obtained by the treatment exposed to 
steroids + Ni were 34%, 41%, 16%, 15%, 24% and 12% for P, 
S, Ca, Mn, Cu and Zn, respectively. In leaves, the increases 
were 12%, 10%, 9%, 71%, 15% and 25%, respectively, and 
in stems, the increases were 10%, 91%, 16% and 10% for 
Ca, Mn, Cu and Zn, respectively, in comparison with plants 
treated only with Ni.

Stomatal Performance was Upregulated by EBR

The stress caused by Ni promoted reductions in stomatal 
characteristics (Table 4). On the adaxial face, the EBR 

Table 1  Ni contents in tomato 
plants sprayed with EBR and 
exposed to Ni stress

Ni2+  = Nickel. Columns with different letters indicate significant differences from the Scott-Knott test 
(P < 0.05).Values described corresponding to means from five repetitions and standard deviations

Ni2+ EBR Ni in root (µg g  DM−1) Ni in stem (µg g  DM−1) Ni in leaf (µg g  DM−1)

 −  − 7.69 ± 0.33c 0.23 ± 0.02c 0.27 ± 0.02c
 −  + 7.42 ± 0.29c 0.21 ± 0.01c 0.22 ± 0.02c
 +  − 229.30 ± 8.18a 74.89 ± 1.72a 104.07 ± 4.91a
 +  + 210.93 ± 6.77b 64.50 ± 1.81b 80.59 ± 2.76b
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treatment in plants under Ni stress increased the SD and SI 
by 18% and 10%, respectively. For abaxial faces, the incre-
ments were 19% and 99%, respectively. For EDS, reductions 
of 7% were detected on both sides of the leaf (adaxial and 
abaxial) compared to the equal treatment without EBR.

EBR Alleviated the Oxidative Impacts 
on the Photosynthetic Apparatus

Excess Ni caused reductions in photosynthetic pigments 
(Table 5). However, 100 nM EBR in plants stressed by Ni 

Table 2  Structures of root and 
leaf in tomato plants sprayed 
with EBR and exposed to Ni 
stress

RET root epidermis thickness, RDT root endodermis thickness, RCT  root cortex thickness, VCD vascu-
lar cylinder diameter, RMD root metaxylem diameter, ETAd epidermis thickness from adaxial leaf side, 
ETAb epidermis thickness from abaxial leaf side, PPT palisade parenchyma thickness, SPT spongy paren-
chyma thickness. Columns with different letters indicate significant differences from the Scott-Knott test 
(P < 0.05). Values described corresponding to means from five repetitions and standard deviations

Ni2+ EBR RET (µm) RDT (µm) RCT (µm) VCD (µm) RMD (µm)

 −  − 19.76 ± 1.06a 17.54 ± 0.68a 190 ± 3b 175 ± 10a 30.39 ± 1.22b
 −  + 20.18 ± 1.31a 17.73 ± 0.72a 198 ± 3a 179 ± 10a 33.18 ± 1.36a
 +  − 14.04 ± 1.11c 14.78 ± 0.60c 176 ± 3c 145 ± 11b 24.84 ± 1.12d
 +  + 17.74 ± 0.93b 16.19 ± 0.65b 183 ± 3d 151 ± 11b 27.58 ± 1.28c
Ni2+ EBR ETAd (µm) ETAb (µm) PPT (µm) SPT (µm) Ratio PPT/SPT
 −  − 21.42 ± 0.50a 15.29 ± 0.59a 65 ± 3a 68 ± 2a 0.95 ± 0.07a
 −  + 21.71 ± 0.44a 15.41 ± 0.75a 66 ± 3a 69 ± 3a 0.96 ± 0.06a
 +  − 19.32 ± 0.52c 11.65 ± 0.62c 60 ± 4a 59 ± 2c 1.02 ± 0.07a
 +  + 20.42 ± 0.42b 13.73 ± 0.60b 63 ± 4a 64 ± 1b 0.99 ± 0.06a

Fig. 1  Root and leaf cross sec-
tions in tomato plants sprayed 
with EBR and exposed to Ni 
stress. − Ni / − EBR (A), − Ni 
/ + EBR (B), + Ni / − EBR (C) 
and + Ni / + EBR (D). RE root 
epidermis, RC root cortex, RD 
root endodermis, VC vascular 
cylinder, RM root metaxylem, 
EAd adaxial epidermis, EAb 
abaxial epidermis, PP palisade 
parenchyma, SP spongy paren-
chyma. Black bars = 300 µm and 
grey bars: 150 µm
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promoted increases of 19%, 23%, 19% and 55% in Chl a, 
Chl b, Chl Total and Car, respectively, and a 24% reduc-
tion in Chl Total/Car, when compared to the same treat-
ment without EBR. In relation to chlorophyll fluorescence, 
plants under Ni stress presented an increase in F0 and a 
reduction in Fv and Fv/Fm (Fig. 2). However, plants treated 
with Ni + 100 nM EBR suffered a decrease of 4% in F0 
and increases of 6% and 2% in Fv and Fv/Fm, respectively, 
in relation to the same treatment without EBR. Excess Ni 
caused reductions in ΦPSII, qP and ETR and increases in 
NPQ, EXC and ETR/PN (Table 5). However, plants treated 
with  Ni2+  + 100 nM EBR achieved increases of 33%, 20% 
and 33% in ΦPSII, qP and ETR, respectively, and decreases in 
NPQ, EXC and ETR/PN of 33%, 6% and 12%, respectively, 

when comparing the same treatment in the absence of the 
steroid. For gas exchange,  Ni2+ caused negative interfer-
ences (Table 5). However, plants subjected to Ni stress when 
sprayed with EBR obtained increases in PN, E, gs, WUE 
and PN/Ci of 52%, 17%, 34%, 29% and 92%, respectively, 
and a loss of 22% in Ci compared to plants treated with 
 Ni2+  + 0 nM EBR.

Benefits on Antioxidant Defence Induced by EBR

Plants exposed to Ni stress had increases in SOD, CAT, 
APX and POX activities (Fig. 3). However, treatment with 
100 nM EBR combined with  Ni2+ promoted increases of 
44%, 27%, 46% and 35% in SOD, CAT, APX and POX, 

Table 3  Nutrient contents in tomato plants sprayed with EBR and exposed to Ni stress

P phosphorus, S Sulphur, Ca calcium, Mn manganese, Cu copper, Zn zinc. Columns with different letters indicate significant differences from 
the Scott-Knott test (P < 0.05). Values described corresponding to means from five repetitions and standard deviations

Ni2+ EBR P (mg g  DM−1) S (mg g  DM−1) Ca (mg g  DM−1) Mn (µg g  DM−1) Cu (µg g  DM−1) Zn (µg g  DM−1)

Contents in root
 −  − 4.48 ± 0.17b 3.59 ± 0.11a 4.65 ± 0.16b 409.26 ± 29.13a 13.90 ± 0.55a 35.43 ± 1.02a
 −  + 4.87 ± 0.21a 3.62 ± 0.13a 5.01 ± 0.18a 414.56 ± 24.68a 14.38 ± 0.69a 35.69 ± 1.15a
 +  − 2.86 ± 0.16d 1.76 ± 0.10c 3.43 ± 0.20d 199.55 ± 10.53c 9.34 ± 0.70c 26.70 ± 0.95c
 +  + 3.83 ± 0.24c 2.49 ± 0.11b 3.98 ± 0.17c 228.83 ± 10.52b 11.58 ± 0.91b 29.80 ± 1.10b
Contents in stem
 −  − 7.62 ± 0.21a 2.61 ± 0.15a 8.55 ± 0.24a 76.02 ± 3.67a 4.53 ± 0.15a 19.36 ± 0.96a
 −  + 7.58 ± 0.31a 2.66 ± 0.21a 8.81 ± 0.29a 77.57 ± 2.53a 4.42 ± 0.22a 20.20 ± 0.99a
 +  − 7.40 ± 0.15a 2.43 ± 0.14a 7.29 ± 0.27c 17.71 ± 1.55c 3.06 ± 0.14c 16.50 ± 0.62c
 +  + 7.51 ± 0.30a 2.56 ± 0.15a 7.99 ± 0.26b 33.80 ± 2.54b 3.54 ± 0.15b 18.20 ± 0.85b
Contents in leaf
 −  − 7.72 ± 0.35a 5.15 ± 0.20a 19.20 ± 0.71a 152.28 ± 8.78a 6.90 ± 0.40a 20.33 ± 0.46a
 −  + 7.89 ± 0.32a 5.39 ± 0.23a 20.04 ± 0.61a 153.14 ± 7.65a 7.06 ± 0.42a 20.46 ± 0.87a
 +  − 6.20 ± 0.34c 4.15 ± 0.18c 16.31 ± 0.62c 38.05 ± 2.84c 5.40 ± 0.23c 13.35 ± 0.70c
 +  + 6.94 ± 0.26b 4.58 ± 0.18b 17.78 ± 0.68b 65.08 ± 3.31b 6.21 ± 0.19b 16.71 ± 0.74b

Table 4  Stomatal variables in 
tomato plants sprayed with EBR 
and exposed to Ni stress

SD stomatal density, PDS polar diameter of the stomata, EDS equatorial diameter of the stomata, SF Sto-
matal functionality, SI stomatal Index. Columns with different letters indicate significant differences from 
the Scott-Knott test (P < 0.05). Values described corresponding to means from five repetitions and standard 
deviations

Ni2+ EBR SD (stomata per  mm2) PDS (µm) EDS (µm) SF SI

Adaxial face
 −  − 16.32 ± 0.94b 12.34 ± 0.33b 20.95 ± 0.85c 0.59 ± 0.04a 11.71 ± 0.80a
 −  + 17.84 ± 1.15a 11.91 ± 0.60b 20.00 ± 1.04c 0.60 ± 0.03a 12.07 ± 0.79a
 +  − 11.21 ± 0.93d 13.78 ± 0.56a 24.46 ± 0.79a 0.56 ± 0.04a 7.78 ± 0.61d
 +  + 13.24 ± 1.03c 13.01 ± 0.30a 22.79 ± 0.83b 0.57 ± 0.05a 8.55 ± 0.60c
Abaxial face
 −  − 33.13 ± 1.76a 13.91 ± 0.91a 22.05 ± 0.78c 0.63 ± 0.01a 14.95 ± 0.62a
 −  + 33.64 ± 1.33a 13.85 ± 0.62a 21.80 ± 0.85c 0.64 ± 0.02a 14.53 ± 0.55a
 +  − 24.46 ± 1.06c 14.65 ± 1.06a 25.16 ± 0.81a 0.58 ± 0.03b 6.79 ± 0.50c
 +  + 29.05 ± 1.71b 14.13 ± 1.02a 23.51 ± 0.61b 0.60 ± 0.01b 13.48 ± 0.49b
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Table 5  Photosynthetic pigments, chlorophyll fluorescence and gas exchange in tomato plants sprayed with EBR and exposed to Ni stress

Chl a chlorophyll a, Chl b chlorophyll b, Total chl total chlorophyll, Car carotenoids, ΦPSII effective quantum yield of PSII photochemistry, qP 
photochemical quenching coefficient, NPQ nonphotochemical quenching, ETR electron transport rate, EXC relative energy excess at the PSII 
level, ETR/PN  ratio between the electron transport rate and net photosynthetic rate, PN net photosynthetic rate, E transpiration rate, gs stomatal 
conductance, Ci intercellular  CO2 concentration, WUE water-use efficiency, PN/Ci carboxylation instantaneous efficiency. Columns with different 
letters indicate significant differences from the Scott-Knott test (P < 0.05). Values described corresponding to means from five repetitions and 
standard deviations.

Ni2+ EBR Chl a (mg  g–1 FM) Chl b (mg  g–1 FM) Total Chl (mg  g–1 
FM)

Car (mg  g–1 FM) Ratio Chl a/Chl b Ratio total Chl/Car

 −  − 7.18 ± 0.31a 1.35 ± 0.10a 8.53 ± 0.39a 0.75 ± 0.03b 5.32 ± 0.37a 11.39 ± 0.84b
 −  + 7.40 ± 0.38a 1.40 ± 0.10a 8.80 ± 0.47a 0.83 ± 0.06a 5.30 ± 0.17a 10.66 ± 0.90b
 +  − 5.54 ± 0.35c 0.88 ± 0.05c 6.42 ± 0.35c 0.40 ± 0.04d 6.30 ± 0.45b 16.18 ± 1.55a
 +  + 6.58 ± 0.27b 1.08 ± 0.08b 7.65 ± 0.43b 0.62 ± 0.02c 6.12 ± 0.32b 12.32 ± 1.40b

Ni2+ EBR ΦPSII qP NPQ ETR (µmol  m−2  s−1) EXC (µmol  m−2  s−1) ETR/PN

 −  − 0.216 ± 0.007b 0.299 ± 0.010b 0.64 ± 0.03c 31.77 ± 1.05b 0.733 ± 0.009c 1.77 ± 0.03b
 −  + 0.232 ± 0.006a 0.316 ± 0.009a 0.62 ± 0.05c 34.08 ± 1.23a 0.716 ± 0.008d 1.76 ± 0.05b
 +  − 0.129 ± 0.012d 0.212 ± 0.016d 1.20 ± 0.09a 18.98 ± 1.82d 0.833 ± 0.015a 2.10 ± 0.17a
 +  + 0.172 ± 0.007c 0.254 ± 0.010c 0.80 ± 0.05b 25.25 ± 1.05c 0.783 ± 0.008b 1.84 ± 0.07a

Ni2+ EBR PN (µmol  m−2  s−1) E (mmol  m−2  s−1) gs (mol  m−2  s−1) Ci (µmol  mol−1) WUE (µmol  mmol–1) PN/Ci (µmol 
 m−2  s−1  Pa−1)

 −  − 17.96 ± 0.63b 2.54 ± 0.10a 0.230 ± 0.012a 178 ± 8c 7.09 ± 0.42a 0.101 ± 0.007b
 −  + 19.36 ± 0.48a 2.60 ± 0.08a 0.242 ± 0.019a 161 ± 7d 7.45 ± 0.27a 0.120 ± 0.007a
 +  − 9.05 ± 0.45d 1.95 ± 0.12c 0.152 ± 0.013c 254 ± 9a 4.67 ± 0.36c 0.036 ± 0.001d
 +  + 13.75 ± 0.54c 2.29 ± 0.13b 0.204 ± 0.010b 199 ± 8b 6.01 ± 0.23b 0.069 ± 0.003c

Fig. 2  Minimal fluorescence 
yield of the dark-adapted state 
(F0), maximal fluorescence 
yield of the dark-adapted state 
(Fm), variable fluorescence (Fv) 
and maximal quantum yield of 
PSII photochemistry (Fv/Fm) in 
tomato plants sprayed with EBR 
and exposed to Ni stress. Bars 
with different letters indicate 
significant differences from the 
Scott-Knott test (P < 0.05). Bars 
corresponding to means from 
five repetitions and standard 
deviations
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respectively, compared to equal treatment without steroids. 
Stress indicators caused by Ni stimulated ROS overaccu-
mulation (Fig. 4). However, the application of 100 nM EBR 
in plants exposed to 400 µM Ni caused decreases in the 
compounds  O2

−,  H2O2, MDA and EL of 22%, 19%, 41% 
and 21%, respectively, in relation to the Ni + 0 nM EBR 
treatment.

Steroids Reduced the Deleterious Effects Caused 
by Excess Ni on Biomass

Biomass was significantly reduced in plants exposed to treat-
ment with 400 µM Ni (Fig. 5). However, the application of 
EBR in plants stressed by Ni promoted increases in LDM, 
SDM, RDM and TDM of 84%, 93%, 70% and 84%, respec-
tively, when compared to plants exposed only to Ni stress.

Discussion

In this research, the exogenous application of 400 µM Ni 
caused significant increases in the content of this metal 
found in leaf, stem and root tissues in tomato plants. On 
the other hand, plants treated with 100 nM EBR presented 

reductions in Ni contents, confirming the action of this ster-
oid attenuating the toxic effects caused by this heavy metal. 
In the literature, EBR exercises multiple roles involved in the 
regulation of heavy metal effects on plant metabolism, maxi-
mizing ROS elimination (Zhong et al. 2020), improving cell 
membrane permeability (Ramakrishna and Rao 2012) and 
stimulating the production of phytochelatins (Talarek-Kar-
wel et al. 2019), thus promoting a reduction in the absorp-
tion and accumulation of Ni (Rajewska et al. 2016). Kumar 
et al. (2015) investigated the Ni effects in self-grafted or 
grafted onto Solanum lycopersicum plants and observed sig-
nificant increases in the Ni contents in plant tissues. Similar 
to our study, Kanwar et al. (2012) evaluated Brassica juncea 
plants and observed a reduction in Ni uptake in root, stem 
and leaf tissues after foliar EBR application.

Excess Ni had negative repercussions on root structures, 
and exogenous EBR treatment alleviated these interferences, 
modulating increases in RET, RDT, RCT and RMD. These 
benefits observed in these variables may be related to the 
actions of this steroid by stimulating the increase in the 
thickness of root structures, more specifically through cell 
division and expansion processes in RET, RDT and RCT 
(Hacham et al. 2011), aiming to minimize metal transloca-
tion, acting as a barrier and improving membrane selectivity 

Fig. 3  Activities of superoxide 
dismutase (SOD), catalase 
(CAT), ascorbate peroxidase 
(APX) and peroxidase (POX) in 
tomato plants sprayed with EBR 
and Ni stress. Columns with dif-
ferent letters indicate significant 
differences from the Scott-
Knott test (P < 0.05). Columns 
corresponding to means from 
five repetitions and standard 
deviations
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(Gomes et al. 2011). Another converging point is that the 
increase observed in RMD after EBR application suggests 
improvements in nutrient absorption due to the greater 
permeability of the membranes, which is corroborated by 
the increase in the content of macronutrients (P, S and Ca) 
and of micronutrients (Mn, Zn and Cu) found in this study. 
Saraiva et al. (2021), evaluating Glycine max plants under 
high Ni concentrations, verified increases in root structures 
after treatment with 100 nM EBR. Jan et al. (2018) tested 
the individual and combined effects of EBR and Si on Pisum 
sativum seedlings under Cd stress and observed that treat-
ment with EBR improved the nutritional status.

Exogenously applied EBR minimized the harmful effects 
of excess Ni on leaf anatomy. The epidermis is a tissue asso-
ciated with water use, and it plays an essential role, pro-
tecting against excessive water loss during the transpiration 
process (Javelle et al. 2011). Therefore, increases in ETAd 
and ETAb in plants treated with 100 nM EBR can be cor-
related with increments obtained by this steroid on E and 
WUE. The intrinsic transport capacity of the mesophyll and 
 CO2 conductance from ambient air to carboxylation sites in 
chloroplasts modulate the photosynthetic process, in which 
SPT is connected to an intense formation of intercellular 
spaces directly involved with gas exchange. In other words, 
the increases promoted by EBR on leaf structures improved 

the photosynthetic performance, including PN and PN/Ci, 
which was also observed in other studies (Ennajeh et al. 
2010; Sorin et al. 2015). A study conducted by Santos et al. 
(2020) measured the leaf modifications induced by EBR 
(100 nM) in Glycine max plants under three Zn levels (0.2, 
20 and 2000 µM) and verified increases in ETAd, ETAb and 
SPT. Oliveira et al. (2019) obtained increments in ETAd, 
ETAb and SPT after pretreatment with EBR in young Euca-
lyptus urophylla plants stressed by  Na+.

Treatment with EBR alleviated the negative interference 
caused by Ni on stomatal characteristics. Increments in 
SD, EDS and SI detected in this study indicate that exog-
enous EBR pretreatment stimulated stomatal performance, 
which was confirmed by the increase obtained in gs. This 
steroid plays an important role in the regulation of stoma-
tal development, mediated by specific signaling proteins, 
such as BRI1, BSU1 and BIN2 (Kim et al. 2012), positively 
modulating gas exchange, more specifically increasing  CO2 
inflow, corroborated by the maximizations of SPT, PN and 
PN/Ci verified in this research. SD, EDS and SI are variables 
intrinsically linked to the quantity, size and functionality of 
the stomata (Franks and Beerling 2009; Maia et al. 2018) 
and are interesting indicators to measure stomatal behav-
iour during stress conditions. Saraiva et al. (2021) evalu-
ated the anatomical responses modulated by EBR (100 nM) 

Fig. 4  Superoxide anion  (O2
−), 

hydrogen peroxide  (H2O2), 
malondialdehyde (MDA) and 
electrolyte leakage (EL) in 
tomato plants sprayed with EBR 
and Ni stress. Columns with dif-
ferent letters indicate significant 
differences from the Scott-
Knott test (P < 0.05). Columns 
corresponding to means from 
five repetitions and standard 
deviations
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in Glycine max plants subjected to Ni stress and detected 
increases in SD, EDS and SI. A study connected to EBR 
effects in Oryza sativa plants under Fe toxicity. Tadaiesky 
et al. (2020) reported benefits on stomatal characteristics, 
including SD.

Steroids in plants under Ni stress induced increases in 
SOD, CAT, APX and POX activities. These results are 
clearly related to the participation of this steroid during the 
regulation, biosynthesis and/or activation of these enzymes, 
mediated by the processes of expression, transcription and 
translation of specific genes, such as RBOH (respiratory 
burst oxidase homologue), MAPK1 (mitogen-activated pro-
tein kinase 1) and MAPK3 (mitogen-activated protein kinase 
3), stimulating the antioxidant defence system to eliminate 
ROS (Xia et al. 2009; Sharma et al. 2016). Yusuf et al. 
(2014) investigated the interaction of different Ni concen-
trations and two 28-homobrasinolide levels in Vigna radiata 
plants and found that BR application promoted increases in 
CAT, POX and SOD. Similar to our results, Dalyan et al. 
(2018), working with Brassica juncea seedlings treated with 
EBR and under Pb stress, found increases in antioxidant 
enzymatic activities.

Plants exposed to excess Ni induced an imbalance associ-
ated with ROS, strongly confirmed by higher MDA and EL 

contents, reducing cell membrane integrity and resulting in 
severe oxidative damage (Jahan et al. 2020). In our study, 
plants treated with Ni showed increases in the levels of these 
stress indicators, but EBR application attenuated these del-
eterious effects, reducing  O2

−,  H2O2, MDA and EL. EBR 
restricts the excessive formation of ROS, positively modu-
lates the antioxidant system and stimulates increases in the 
activities of SOD, CAT, APX and POX, as verified in this 
research. Mir et al. (2018) observed increases in the contents 
of  O2

−,  H2O2, MDA and EL in Glycine max plants exposed 
to Ni stress. Ramakrishna and Rao (2014) studied the toxic 
effects of Zn on Raphanus sativus plants and identified that 
EBR alleviated oxidative stress by reducing the levels of 
 H2O2, MDA and EL.

Ni-induced stress considerably decreased the content of 
chloroplastic pigments. Ni stress negatively impacts the size 
and number of chloroplasts, as well as their ultrastructural 
disorganization, including a decrease in the number of grains 
and thylakoids and their deformation, together with changes 
in the lipid composition of the membrane (Sreekanth et al. 
2013). On the other hand, pretreatment using EBR promoted 
increases in Chl a, Chl b, total Chl and Car, which can be 
explained by the fact that this steroid acts in the maintenance 
of chloroplast integrity through the reduction of membrane 

Fig. 5  Leaf dry matter (LDM), 
root dry matter (RDM), stem 
dry matter (SDM) and total 
dry matter (TDM) in tomato 
plants sprayed with EBR and Ni 
stress. Columns with differ-
ent letters indicate significant 
differences from the Scott-
Knott test (P < 0.05). Columns 
corresponding to means from 
five repetitions and standard 
deviations
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damage, corroborated by the decrease in MDA and EL in 
this study. In a study evaluating the attenuation of chromium 
stress using polyamine and EBR, Choudhary et al. (2012) 
identified an increase in pigment contents in Raphanus 
sativus plants treated with  10–9 M EBR. Shah et al. (2019) 
detected increases in the levels of Chl a, Chl b, Car and 
total Chl after the application of EBR, mitigating the injuries 
caused by Cd in Cucumis sativus plants.

EBR spray mitigated the interference caused by excess Ni 
on F0, Fv and Fv/Fm. The increases obtained in Fv and Fv/Fm 
and reduction in F0 signalled the benefits on efficiency of 
conversion and capture of light energy in the PSII reaction 
centre. In other words, this steroid can reduce photoinhi-
bition by increasing the proportion of oxidized plastoqui-
none QA, boosting photon capture in the reaction centre and 
increasing the Fv/Fm ratio, an efficient indicator connected 
to photosynthetic machinery (Hertle et al. 2013; Li et al. 
2015a). Drążkiewicz and Baszyński (2010) evaluated Zea 
mays seedlings under Ni stress and verified reductions in 
Fv and Fv/Fm. On the other hand, a study with Oryza sativa 
plants subjected to simulated acid rain stress that was pre-
treated with 100 nM EBR. Fonseca et al. (2020) obtained 
positive results in F0, Fv and Fv/Fm. Additionally, corrobo-
rating our study, Santos et al. (2018) analysed EBR spray 
in Vigna unguiculata plants under Cd stress and found an 
increase in Fv/Fm and a reduction in F0.

EBR alleviated the deleterious effects provoked by 
400 µM Ni on chlorophyll fluorescence. Excess Ni inhibited/
reduced the efficiency of the electron flow from pheophytin 
via plastoquinone QA and Fe to plastoquinone QB, chang-
ing the structure of carriers, such as QB, or reaction centre 
proteins present in the thylakoids, decreasing the content 
of cytochromes b6f and b559, as well as ferredoxin and plas-
tocyanin (Seregin and Kozhevnikova 2006). However, the 
application of 100 nM EBR promoted increments in ΦPSII, 
qp and ETR due to this steroid contributing during the open-
ing process from the PSII reaction centre, improving the 
efficiency in the capture of light energy and consequently 
increasing the photosynthetic efficiency of electron transport 
(Li et al. 2015b). In addition, EBR induced a reduction in 
NPQ, EXC and ETR/PN values, confirming the maintenance 
of excitation energy transfer by the antenna system towards 
the reaction centres, reducing heat dissipation and protect-
ing PSII from damage caused by excess energy (Ogweno 
et al. 2008; Thussagunpanit et al. 2015). Reductions in ΦPSII 
and qp values in Amaranthus paniculatus plants exposed to 
different Ni concentrations were identified by Pietrini et al. 
(2015). A study by Siddiqui et al. (2018) comparing the 
application of two BR isomers (28-homobrassinolide and 
24-epibrassinolide) in Brassica juncea plants obtained 
increases in ΦPSII, qp and ETR and a reduction in NPQ, con-
firming improvements in chlorophyll fluorescence caused by 
the action of this steroid.

Plants treated with 100 nM EBR and submitted to 400 µM 
Ni presented interesting benefits in gas exchange. Ni stress 
impairs numerous metabolic processes, inhibiting photosyn-
thesis through damage to the electron transport chain, reduc-
ing enzyme activities and synthesizing chlorophyll con-
tents, which are associated with decreased gs, E and WUE 
(Yusuf et al. 2011). Increases in PN, E, WUE and PN/Ci 
achieved with EBR spray are explained by the beneficial 
repercussions that this steroid provided on photosynthetic 
apparatus, through increases in ΦPSII, qp and ETR. These 
increases in gas exchange can also reveal an improvement in 
stomatal performance, enhancing  CO2 fixation, detected by 
the increase in gs and reduction in Ci. Research conducted 
by Reis et al. (2017) investigated the behaviour of Glycine 
max plants exposed to progressive Ni concentrations (0, 
0.05, 0.10, 0.50, 10 and 20 µM) and found that PN, gs and E 
decreased but Ci increased in plants under high Ni (20 µM). 
Similar results were described by Cunha et al. (2020), who 
evaluated the EBR roles in Eucalyptus urophylla plants dur-
ing Cd stress and described increments in PN, E, gs, WUE 
and PN/Ci and a reduction in Ci.

Ni stress reduced plant growth, consequently resulting 
in significant reductions in the biomass of roots, stems and 
leaves. The decrease in biomass is caused by Ni stress due 
to its negative interference with nutrient absorption, plant 
metabolism, water relations, gas exchange and cell perme-
ability (Hassan et al. 2019). On the other hand, plants treated 
with EBR obtained considerable increases in LDM, SDM, 
RDM and TDM, and these results were intrinsically con-
nected to the multiple roles of this steroid in the antioxidant 
system, chloroplastic pigments, chlorophyll fluorescence, 
gas exchange, nutritional status and anatomical character-
istics described in this study. Solanum lycopersicum plants 
treated with  10–8 M EBR had increases in RDM and shoot 
dry matter in a study conducted by Nazir et al. (2019) eval-
uating the combined effects of EBR and  H2O2 aiming to 
mitigate Cu stress. Corroborating our research, Ribeiro et al. 
(2020) revealed increases in LDM, SDM, RDM and TDM 
after the application of 100 nM in young Eucalyptus uro-
phylla plants subjected to Ni toxicity.

Conclusion

Our results clearly suggest that EBR acted in defence against 
oxidative damage caused by excess Ni by protecting the 
photosynthetic machinery, upregulating the antioxidant 
system and improving leaf anatomy. This steroid relieves 
Ni-induced oxidative stress, stimulating enzymes connected 
to redox metabolism, such as SOD, APX and POX, which 
are involved in the detoxification of reactive oxygen spe-
cies, including superoxide anion and hydrogen peroxide. 
Exogenous EBR application alleviated photoinhibition and 
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contributed to the maintenance of photosynthetic efficiency, 
as demonstrated in this study through increases in ΦPSII, 
qp, ETR and photosynthetic pigments. Additionally, EBR 
promoted improvements in leaf structures and stomatal per-
formance, as confirmed by the increments in gas exchange 
detected in this study. Simultaneously, the multiple func-
tions of this steroid in the antioxidant system, photosynthetic 
machinery, gas exchange and anatomical characteristics 
worked towards the amelioration of nutritional status and 
to increase the biomass verified in our results. Therefore, 
this research demonstrated that EBR alleviated the nega-
tive interferences caused by Ni stress in tomato plants, but 
it is highly recommended in the future studies, molecular 
approaches aiming to determine the gene expression modu-
lated by EBR in plants under Ni toxicity.
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Abstract: Several toxic pollutants are released into the atmosphere through human activities. 

Among these pollutants, lead (Pb) is a non-biodegradable element that can cause reduced cell 

division, impact negatively on the biosynthesis of photosynthetic pigments, and lower biomass 

accumulation, which can lead to plant death. 24-epibrassinolide (EBR) is a plant growth regulator 

with broad benefits on physiological functions and biochemical responses, conferring tolerance to 

plants against several biotic and abiotic stresses. The experiment was randomized with four 

treatments, two lead concentrations (0 and 200 µM Pb, described as −Pb and +Pb, respectively) and 

two EBR (0 and 100 nM EBR, described as −EBR and +EBR, respectively). We detected a negative 

impact of Pb stress in tomato plants; however, the exogenous application of EBR induced protection 

on leaf anatomy and photosynthetic apparatus, mitigating the Pb impacts on growth. This steroid 

enhances the root and leaf structures (in root tissue, the epidermis thickness; and in the leaf, palisade 

parenchyma, and spongy parenchyma), improving the membrane selectivity, light energy 

absorption, and CO2 fixation. Applying 200 µM Pb and 100 nM EBR caused an increase in 

superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase activity (by 26%, 18%, 25%, 

and 20%, respectively). Moreover, the improvements obtained on photosynthetic pigments, electron 

transport rate, the effective quantum yield of photosystem II photochemistry, and net 

photosynthetic rate prove the benefits and protection of photosynthetic apparatus, resulting in 

increased biomass accumulation, with increases of 95%, 115%, 74%, and 92% in leaf, root, stem, and 

the whole plant, respectively. Taken together, our findings confirm that EBR alleviates the damages 

provoked by Pb stress in tomatoes. 

Keywords: brassinosteroids; growth; heavy metal; photosynthesis; Solanum lycopersicum 

1. Introduction

Due to fast and uncontrolled industrialization, urbanization, and intensive 

agriculture, the environment has been under remarkable pressure, with various toxic 

pollutants released into the atmosphere through human activities [1]. Heavy metals 

(HMs) are non-biodegradable inorganic chemical constituents and are a major threat to 

the environment due to their potentially cytotoxic, genotoxic, and mutagenic 

characteristics. Some of these HMs are not essential since they do not perform any known 

physiological function in plants, such as arsenic (As), cadmium (Cd), lead (Pb), chromium 
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(Cr), and aluminum (Al) [2,3]. One of the most toxic HMs, Pb, can cause common toxic 

effects on plants, such as inhibition of growth, altered nutrient assimilation, low biomass 

accumulation, and senescence, which ultimately cause plant death [4]. Photosynthetic 

pathways are also affected by Pb toxicity due to disrupting chloroplast ultrastructure and 

obstruction of essential pigments synthesis, including chlorophyll and carotenoids, in 

addition to blocking the Calvin cycle and electron transport chain, which produces a 

shortage of carbon dioxide [5,6]. 

Plants under HMs toxicity usually present redox imbalance of the cell, inducing 

oxidative stress due to overproduction of reactive oxygen species (ROS), more specifically 

superoxide radical (O2−), hydrogen peroxide (H2O2), and hydroxyl radicals (OH−), being 

highly reactive, toxic, and harmful to plant metabolism [7,8]. Interestingly, Rodrigues et 

al. [9] described that the activities of the antioxidant enzymes superoxide dismutase 

(SOD), catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (POX) were 

stimulated after application of brassinosteroids (BRs), indicating an improvement in O2− 

detoxification. The SOD enzyme is part of the first line of defense of the antioxidant 

system in plants and is involved in the dismutation of O2− into H2O2, which will later be 

decomposed by the CAT, APX, and POX enzymes [10,11]. 

The leaf anatomy is linked to leaf mass per unit area and correlates well with plant 

growth rates due to its influence on photosynthesis and hence plant growth; however, 

HMs, including Pb, can cause damaged and altered ultrastructure of this foliar structure 

[12,13]. The epidermis is the protective outer layer of cells that acts as a barrier against 

biotic or abiotic agents and as an active interface that controls the vital exchange of gas, 

water, and nutrients with the environment [14,15]. Palisade and spongy parenchyma are 

tissues related to the photosynthetic process and formation of intercellular spaces 

involved with gas exchange, contributing to the influx and consequent fixation of CO2 

[16]. 

The chlorophyll content is an important indicator of photosynthetic potential, and 

carotenoids are the endogenous antioxidant pigments that prevent the peroxidation of 

lipid membranes by the extinction of ROS [17]. Pb stress causes chloroplast 

disorganization and damage to its membrane, besides induced increases in chlorophyllase 

activity, the enzyme responsible for chlorophyll degradation [18,19]. In parallel to this, the 

stress induced by Pb also causes an imbalance in plastoquinone and electron transport, 

reducing photosynthesis, which consequently leads to a reduction in biomass [20]. 

BRs are polyhydroxy steroid phytohormones that perform various physiological 

functions, such as growth, and confer resistance to plants against various biotic and 

abiotic stresses [21,22]. Among all isolated and characterized, brassinolide (BL), 24-

epibrassinolide (EBR), and 28-homobrassinolide (HBL) are the main bioactive BRs, and 

several studies are addressing the adaptive responses of plants caused by these steroids 

to environmental stresses [23], such as heavy metal toxicity [24], salinity [25], temperature 

extremes [26,27], and drought [28,29]. 

To overcome the harmful effects of these stresses, especially heavy metals, BRs can 

perform several roles, such as reducing these toxic elements’ absorption by altering cell 

membrane permeability and inducing a group of defensive enzymes [30]. However, some 

processes performed by this steroid on heavy metal stress still need further research; 

because of this, we hypothesized that EBR mitigates the toxic effects of heavy metals, 

especially Pb. Therefore, this study aimed to verify whether the exogenous application of 

EBR can preserve tomato plants from oxidative damages caused by excess Pb, evaluating 

the responses associated with leaf anatomy, antioxidant metabolism, photosynthetic 

apparatus, and biomass. 
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2. Materials and Methods 

2.1. Location and Growth Conditions 

The experiment was performed at the Universidade Federal Rural da Amazônia, 

Paragominas, Brazil (2°55′ S, 47°34′ W). The study was conducted in a greenhouse 

illuminated with sunlight, but with temperature and humidity controlled. The minimum, 

maximum, and median temperatures were 23.3, 29.2, and 25.5 °C, respectively. The 

relative humidity during the experimental period varied between 60% and 80% and 

photoperiod of 12/12. 

2.2. Plants, Containers and Acclimation 

Seeds of Solanum lycopersicum L. cv Santa Clara were germinated using vegetable 

substrate and transplanted on the 14th day into 1.2-L pots filled with a mixed substrate of 

sand and vermiculite at a ratio of 3:1. Plants were cultivated under semi-hydroponic 

conditions containing 500 mL of nutritive solution. A modified Hoagland and Arnon [31] 

solution was used as a source of nutrients; the ionic strength started at 50% and was 

modified to 100% after 2 days. 

2.3. Experimental Design 

The experiment was randomized with four treatments, two lead concentrations (0 

and 200 µM Pb, described as −Pb and +Pb, respectively) and two EBR (0 and 100 nM EBR, 

described as −EBR and +EBR, respectively). Five replicates for each one of the four 

treatments were conducted and used in the experiment in a total of 20 experimental units, 

with three plants in each unit. Pb and EBR concentrations were chosen according to 

studies by Guedes et al. [32] and Maia et al. [33], respectively. 

2.4. 24-Epibrassinolide (EBR) Preparation and Application 

Fifteen-day-old seedlings were sprayed with 24-epibrassinolide (EBR) or Milli-Q 

water (containing a proportion of ethanol that was equally used in the preparation of the 

EBR solution) for 20 days (days 10−30 after the start of the experiment), being applied this 

steroid with intervals of 5 days. The 0 and 100 nM EBR (Sigma-Aldrich, USA) solutions 

were prepared by dissolving the solute in ethanol followed by dilution with Milli-Q water 

[ethanol:water (v/v) = 1:10,000] [34]. 

2.5. Plant Nutrition and Pb Treatment 

The plants received the following macro and micronutrients contained in the nutrient 

solution: 8.75 mM KNO3, 7.5 mM Ca(NO3)2·4H2O, 3.25 mM NH4H2PO4, 1.5 mM MgSO4·7 

H2O, 62.50 µM KCl, 31.25 µM H3BO3, 2.50 µM MnSO4·H2O, 2.50 µM ZnSO4·7H2O, 0.63 µM 

CuSO4·5H2O, 0.63 µM NaMoO4·5H2O, and 250.0 µM NaEDTAFe·3H2O. To induce Pb 

stress, PbCl2 was used at concentrations of 0 and 200 µM Pb and was applied over 10 days 

(days 20−30 after the start of the experiment). During the study, the nutrient solutions 

were changed at 07:00 h at 3-day intervals, with the pH adjusted to 5.5 using HCl or 

NaOH. On day 30 of the experiment, physiological and morphological parameters were 

measured for all plants, and tissues were harvested for anatomical, biochemical, and 

nutritional analyses. 

2.6. Determination of Pb and Nutrients 

Milled samples (100 mg) of root, stem, and leaf tissues were pre-digested in conical 

tubes (50 mL) with 2 mL of sub-boiled HNO3. Subsequently, 8 mL of a solution containing 

4 mL of H2O2 (30% v/v) and 4 mL of ultra-pure water was added and transferred to a 

Teflon digestion vessel in agreement with Paniz et al. [35]. Determination of Pb, Mg, K, 

Ca, Cu, Zn, and Mn was performed using an inductively coupled plasma mass 

spectrometer (model ICP-MS 7900; Agilent). 
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2.7. Measurements of Root and Leaf Anatomical Variables 

Samples were collected from the middle region of the leaf limb of fully expanded 

leaves and roots 5 cm from the root apex. Subsequently, all collected botanical material 

was fixed in FAA 70 for 24 h, dehydrated in ethanol, and embedded in historesin LeicaTM 

(Leica, Nussloch, Germany). Transverse sections with a thickness of 5 µm were obtained 

with a rotating microtome (model Leica RM 2245, Leica Biosystems), stained with tolui-

dine blue [36]. For stomatal characterization, the epidermal impression method was used 

according to Segatto et al. [37]. The slides were observed and photomicrographed under 

an optical microscope (Motic BA 310, Motic Group Co. Ltd.) coupled to a digital camera 

(Motic 2500, Motic Group Co., Ltd). The images were analyzed with Motic plus 2.0, pre-

viously calibrated with a micrometer slide from the manufacturer. The leaf anatomical 

variables evaluated were the polar diameter of the stomata (PDS), equatorial diameter of 

the stomata (EDS), epidermis thickness from adaxial leaf side (ETAd), epidermis thickness 

from abaxial leaf side (ETAb), mesophyll thickness (MT), leaf aerenchyma area (LAA), 

bulliform cell diameter (BCD), trichome density (TD), and trichome size (TS). In both leaf 

faces, the stomatal density (SD) was calculated as the number of stomata per unit area and 

the stomatal functionality (SF) as the ratio PDS/EDS according to Castro et al. [38]. In root 

samples, the root epidermis thickness (RET), root exodermis thickness (RXT), root endo-

dermis thickness (RDT), root cortex thickness (RCT), root aerenchyma area (RAA), vascu-

lar cylinder diameter (VCD), and root metaxylem diameter (RMD) were measured. 

2.8. Determination of Photosynthetic Pigments 

The chlorophyll and carotenoid levels were determined using 40 mg of leaf tissue. 

The samples were homogenized in the dark with 8 mL of 90% methanol (Sigma-Al-

drich™). The homogenate was centrifuged at 6000× g for 10 min at 5 °C. The supernatant 

was removed, and the chlorophyll a (Chl a) and b (Chl b), carotenoid (Car), and total chlo-

rophyll (total Chl) levels were quantified using a spectrophotometer (model UV-M51; Bel 

Photonics) according to the methodology of Lichtenthaler and Buschmann [39]. 

2.9. Measurement of Chlorophyll Fluorescence 

The minimal fluorescence yield of the dark-adapted state (F0), maximal fluorescence 

yield of the dark-adapted state (Fm), variable fluorescence (Fv), maximal quantum yield of 

PSII photochemistry (Fv/Fm), effective quantum yield of PSII photochemistry (ΦPSII), pho-

tochemical quenching coefficient (qP), nonphotochemical quenching (NPQ), electron 

transport rate (ETR), relative energy excess at the PSII level (EXC), and the ratio between 

the electron transport rate and net photosynthetic rate (ETR/PN) were determined using a 

modulated chlorophyll fluorometer (model OS5p; Opti-Sciences). The chlorophyll fluo-

rescence was measured in fully expanded leaves under light. Preliminary tests deter-

mined that the acropetal third of leaves in the middle third of the plant and that adapted 

to the dark for 30 min yielded the greatest Fv/Fm ratio. Therefore, this part of the plant was 

used for measurements. The intensity and duration of the saturation light pulse were 7500 

µmol m−2.s−1 and 0.7 s, respectively. 

2.10. Evaluation of Gas Exchange 

The net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), 

and intercellular CO2 concentration (Ci) were evaluated using an infrared gas analyzer 

(model LCPro+; ADC BioScientific). These parameters were measured at the adaxial sur-

face of fully expanded leaves that were collected from the middle region of the plant. The 

water-use efficiency (WUE) was estimated according to Ma et al. [40], and the instantane-

ous carboxylation efficiency (PN/Ci) was calculated using the formula described by Aragão 

et al. [41]. Gas exchange was evaluated in all plants under a constant CO2 concentration 

(390 µmol mol−1 CO2), photosynthetically active radiation (800 µmol photons m−2 s−1), air-
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flow rate (300 µmol s−1), and temperature (28 °C) in the test chamber between 10:00 and 

12:00 h. 

2.11. Determination of Antioxidant Enzymes, Superoxide and Soluble Proteins Level 

Antioxidant enzymes (SOD, CAT, APX, and POX), superoxide, and soluble proteins 

were extracted from leaf tissues [42]. The extraction mixture was prepared by homogeniz-

ing 500 mg of fresh plant material in 5 mL of extraction buffer, which consisted of 50 mM 

phosphate buffer (pH 7.6), 1.0 mM ascorbate, and 1.0 mM EDTA. Samples were centri-

fuged at 14,000× g for 4 min at 3 °C, and the supernatant was collected. Quantifying the 

total soluble proteins was performed using the method described by Bradford [43]. Ab-

sorbance was measured at 595 nm, using bovine albumin as a standard. 

2.12. Superoxide Dismutase Assay 

For the SOD assay (EC 1.15.1.1), 2.8 mL of a reaction mixture containing 50 mM phos-

phate buffer (pH 7.6), 0.1 mM EDTA, 13 mM methionine (pH 7.6), 75 µM NBT, and 4 µM 

riboflavin was mixed with 0.2 mL of supernatant. The absorbance was then measured at 

560 nm [44]. One SOD unit was defined as the amount of enzyme required to inhibit 50% 

of the NBT photoreduction. The SOD activity was expressed in unit mg−1 protein. 

2.13. Catalase Assay 

For the CAT assay (EC 1.11.1.6), 0.2 mL of supernatant and 1.8 mL of a reaction mix-

ture containing 50 mM phosphate buffer (pH 7.0) and 12.5 mM hydrogen peroxide were 

mixed, and the absorbance was measured at 240 nm [45]. The CAT activity was expressed 

in µmol H2O2 mg−1 protein min−1. 

2.14. Ascorbate Peroxidase Assay 

For the APX assay (EC 1.11.1.11), 1.8 mL of a reaction mixture containing 50 mM 

phosphate buffer (pH 7.0), 0.5 mM ascorbate, 0.1 mM EDTA, and 1.0 mM hydrogen per-

oxide was mixed with 0.2 mL of supernatant, and the absorbance was measured at 290 

nm [46]. The APX activity was expressed in µmol AsA mg−1 protein min−1. 

2.15. Peroxidase Assay 

For the POX assay (EC 1.11.1.7), 1.78 mL of a reaction mixture containing 50 mM 

phosphate buffer (pH 7.0) and 0.05% guaiacol was mixed with 0.2 mL of supernatant, 

followed by the addition of 20 µL of 10 mM hydrogen peroxide. The absorbance was then 

measured at 470 nm [47]. The POX activity was expressed in µmol tetraguaiacol mg−1 pro-

tein min−1. 

2.16. Determination of Superoxide Concentration 

To determine O2−, 1 mL of extract was incubated with 30 mM phosphate buffer [pH 

7.6] and 0.51 mM hydroxylamine hydrochloride for 20 min at 25 °C. Sulphanilamide (17 

mM) and 7 mM α-naphthylamine were added to the incubation mixture for 20 min at 25 

°C. After the reaction, ethyl ether was added in an identical volume and centrifuged at 

3000× g for 5 min. The absorbance was measured at 530 nm [48]. 

2.17. Extraction of Nonenzymatic Compounds 

Nonenzymatic compounds (H2O2 and MDA) were extracted as described by Wu et 

al. [49]. Briefly, a mixture was prepared to extract H2O2 and MDA by homogenizing 500 

mg of fresh leaf material in 5 mL of 5% (w/v) trichloroacetic acid. Samples were centrifuged 

at 15,000× g for 15 min at 3 °C to collect the supernatant. 
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2.18. Determination of Hydrogen Peroxide Concentration 

To measure H2O2, 200 µL of supernatant and 1800 µL of the reaction mixture (2.5 mM 

potassium phosphate buffer [pH 7.0] and 500 mM potassium iodide) were mixed, and the 

absorbance was measured at 390 nm [50]. 

2.19. Quantification of Malondialdehyde Concentration 

MDA was determined by mixing 500 µL of supernatant with 1 mL of the reaction 

mixture, which contained 0.5% (w/v) thiobarbituric acid in 20% trichloroacetic acid. The 

mixture was incubated in boiling water at 95 °C for 20 min, with the reaction terminated 

by placing the reaction container in an ice bath. The samples were centrifuged at 10,000× 

g for 10 min, and the absorbance was measured at 532 nm. The nonspecific absorption at 

600 nm was subtracted from the absorbance data. The amount of MDA−TBA complex (red 

pigment) was calculated [51], with minor modifications and using an extinction coefficient 

of 155 mM−1 cm−1. 

2.20. Determination of Electrolyte Leakage 

Electrolyte leakage was measured according to the method of Gong et al. [52] with 

minor modifications. Fresh tissue (200 mg) was cut into pieces 1 cm in length and placed 

in containers with 8 mL of distilled deionized water. The containers were incubated in a 

water bath at 40 °C for 30 min, and the initial electrical conductivity of the medium (EC1) 

was measured. The samples were then boiled at 95 °C for 20 min to release the electrolytes. 

After cooling, the final electrical conductivity (EC2) was measured. The percentage of elec-

trolyte leakage was calculated using the formula EL (%) = (EC1/EC2) × 100. 

2.21. Measurements of Biomass 

The biomass of roots and leaves was measured based on constant dry weights (g) 

after drying in a forced-air ventilation oven at 65 °C. 

2.22. Data Analysis 

The data were subjected to an analysis of variance, and significant differences be-

tween the means were determined using the Scott–Knott test at a probability level of 5% 

[53]. Standard deviations were calculated for each treatment. Statistical analysis of the 

data was done using R® software [54]. 

3. Results 

3.1. Pb Content Was Minimized by EBR in Plants Exposed to Toxicity 

The treatment with 200 µM of Pb caused a significant increase in the content of this 

metal on the analyzed tissues (Table 1). However, plants treated with Pb and EBR showed 

reductions of 55%, 65%, and 45% in the content of Pb in the tissues of the root, stem, and 

leaf, respectively, concerning the same treatment without the steroid. 

Table 1. Lead contents in tomato plants treated with EBR and subjected to Pb toxicity. 

Pb EBR Pb in Root (µg g DM−1) Pb in Stem (µg g DM−1) Pb in Leaf (µg g DM−1) 

− − 0.20 ± 0.02 c 0.00 ± 0.00 d 0.00 ± 0.00 c 

− + 0.51 ± 0.04 c 0.07 ± 0.00 c 0.07 ± 0.01 c 

+ − 115.58 ± 8.33 a 0.91 ± 0.07 a 1.25 ± 0.10 a 

+ + 51.64 ± 3.93 b 0.32 ± 0.02 b 0.69 ± 0.04 b 

Pb = lead; EBR = 24-epibrassinolide. Columns with different letters indicate significant differences 

from the Scott–Knott test (p < 0.05). Means ± SD, n = 5. 
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3.2. EBR Positively Modulated the Root and Leaf Structures 

Toxicity caused by Pb caused reductions in RET, RDT, RCT, VCD, and RMD (Table 

2 and Figure 1). Plants exposed to Pb and treated with EBR increased in RET, RDT, and 

RMD by 23%, 24%, and 20%, respectively. To leaf structures, Pb stress also caused de-

creases (Table 2 and Figure 1). However, the application of EBR in plants submitted to 200 

µM Pb showed increases of 10%, 21%, 9%, and 10% in ETAd, ETAb, PPT, and SPT, respec-

tively, when compared to equal treatment without EBR. 

Table 2. Root and leaf structures in tomato plants treated with EBR and subjected to Pb toxicity. 

Pb EBR RET (µm) RDT (µm) RCT (µm) VCD (µm) RMD (µm) 

− − 21.1 ± 1.5 a 18.8 ± 1.3 a 208 ± 08 a 155 ± 10 a 37.7 ± 2.9 a 

− + 20.9 ± 1.4 a 19.7 ± 1.2 a 209 ± 10 a 156 ± 10 a 39.1 ± 2.2 a 

+ − 15.5 ± 1.4 c 13.3 ± 0.9 c 166 ± 11 b 142 ± 11 a 25.4 ± 1.9 c 

+ + 19.1 ± 1.5 b 16.4 ± 0.9 b 169 ± 11 b 148 ± 11 a 30.4 ± 2.3 b 

Pb EBR ETAd (µm) ETAb (µm) PPT (µm) SPT (µm) Ratio PPT/SPT 

− − 19.02 ± 0.60 a 12.82 ± 1.04 a 67.21 ± 1.21 a 73.42 ± 1.57 a 0.91 ± 0.02 a 

− + 19.99 ± 0.78 a 13.27 ± 1.01 a 67.37 ± 1.08 a 73.78 ± 1.39 a 0.91 ± 0.03 a 

+ − 16.01 ± 0.89 c 8.08 ± 0.58 c 59.36 ± 1.49 c 63.86 ± 1.76 c 0.93 ± 0.04 a 

+ + 17.65 ± 0.71 b 9.80 ± 0.67 b 64.73 ± 1.17 b 70.28 ± 1.45 b 0.92 ± 0.02 a 

Pb = lead; EBR = 24-epibrassinolide; RET = root epidermis thickness; RDT = root endodermis thick-

ness; RCT = root cortex thickness; VCD = vascular cylinder diameter; RMD = root metaxylem diam-

eter; ETAd = epidermis thickness from adaxial leaf side; ETAb = epidermis thickness from abaxial 

leaf side; PPT = palisade parenchyma thickness; SPT = spongy parenchyma thickness. Columns with 

different letters indicate significant differences from the Scott–Knott test (p < 0.05). Means ± SD, n = 

5. 

 

Figure 1. Root and leaf cross sections in tomato plants treated with 24-epibrassinolide (EBR) and 

subjected to lead (Pb) toxicity. −Pb/−EBR (A), −Pb/+EBR (B), +Pb/−EBR (C), and +Pb/+EBR (D). 
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Legends: RE = root epidermis; RC = root cortex; RD = root endodermis; VC = vascular cylinder; RM 

= root metaxylem; EAd = adaxial epidermis; EAb = adaxial epidermis; PP = palisade parenchyma; 

SP = spongy parenchyma. Black bars = 300 µm and gray bars: 150 µm. 

 

Figure 2. Minimal fluorescence yield of the dark-adapted state (F0), maximal fluorescence yield of 

the dark-adapted state (Fm), variable fluorescence (Fv), and maximal quantum yield of PSII photo-

chemistry (Fv/Fm) in tomato plants treated with 24-epibrassinolide (EBR) and subjected to lead (Pb) 

toxicity. Columns with different letters indicate significant differences from the Scott–Knott test (p 

< 0.05). Means ± SD, n = 5. 

3.3. Nutrient Contents and Metal Homeostasis Were Up-Regulated by the Steroid 

Plants submitted to Pb stress showed negative changes in nutrient contents (Table 3). 

On the other hand, the application of EBR in plants treated with the metal promoted ben-

eficial effects on the content of Mg, K, Cu, Zn, and Mn, with increases in the root of 30%, 

19%, 41%, 16%, and 7%, respectively; stem increases of 6%, 3%, 34%, 12%, and 7%; and 

increases in the leaf of 14%, 19%, 41%, 18%, and 15%, compared to treatment with Pb only. 

The Ca content in the root and leaf was increased by 29% and 11%, respectively. 

Table 3. Nutrient contents in tomato plants treated with EBR and subjected to Pb toxicity. 

Pb EBR Mg (mg g DM−1) K (mg g DM−1) Ca (mg g DM−1) Cu (µg g DM−1) Zn (µg g DM−1) Mn (µg g DM−1) 

Contents in root 

− − 8.62 ± 0.26 a 27.72 ± 0.44 b 3.55 ± 0.15 a 8.37 ± 0.33 a 25.90 ± 0.32 b 315.11 ± 7.82 a 

− + 8.85 ± 0.43 a 29.99 ± 0.56 a 3.68 ± 0.19 a 8.55 ± 0.26 a 26.65 ± 0.26 a 314.78 ± 9.27 a 

+ − 5.80 ± 0.29 c 20.09 ± 0.94 d 2.48 ± 0.15 c 5.44 ± 0.24 c 19.89 ± 0.53 d 272.14 ± 8.21 c 

+ + 7.54 ± 0.19 b 23.86 ± 0.81 c 3.20 ± 0.11 b 7.66 ± 0.20 b 23.04 ± 0.75 c 290.44 ± 9.54 b 

Contents in stem 

− − 5.66 ± 0.21 a 124.47 ± 0.71 a 7.42 ± 0.18 a 4.51 ± 0.18 a 21.02 ± 0.33 b 32.00 ± 0.66 a 

− + 5.74 ± 0.25 a 124.87 ± 0.58 a 7.68 ± 0.31 a 4.77 ± 0.18 a 22.19 ± 0.57 a 31.70 ± 0.48 a 
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+ − 4.95 ± 0.14 c 118.59 ± 0.58 c 7.05 ± 0.52 a 2.99 ± 0.20 c 17.74 ± 0.46 d 29.48 ± 0.79 b 

+ + 5.26 ± 0.15 b 122.07 ± 0.75 b 7.29 ± 0.15 a 4.02 ± 0.16 b 19.92 ± 0.54 c 30.69 ± 0.53 b 

Contents in leaf 

− − 7.57 ± 0.27 a 29.36 ± 0.61 a 17.54 ± 0.30 a 7.22 ± 0.20 a 16.51 ± 0.23 b 76.73 ± 0.99 a 

− + 7.44 ± 0.22 a 30.13 ± 0.69 a 17.84 ± 0.52 a 7.40 ± 0.30 a 17.30 ± 0.26 a 75.90 ± 0.99 a 

+ − 5.77 ± 0.37 c 23.76 ± 0.92 c 14.96 ± 0.77 c 4.59 ± 0.36 c 12.87 ± 0.28 d 64.02 ± 1.07 c 

+ + 6.58 ± 0.28 b 28.19 ± 0.52 b 16.68 ± 0.53 b 6.46 ± 0.30 b 15.13 ± 0.33 c 73.36 ± 1.11 b 

Pb = lead; EBR = 24-epibrassinolide; Mg = magnesium; K = potassium; Ca = calcium; Cu = copper; 

Zn = zinc; Mn = manganese. Columns with different letters indicate significant differences from the 

Scott–Knott test (p < 0.05). Means ± SD, n = 5. 

3.4. An Antioxidant System Modulated by EBR 

The toxicity of Pb caused an increase in the enzymatic activity of SOD, CAT, APX, 

and POX (Figure 3). However, the combined effect of Pb + EBR increased the performance 

of SOD, CAT, APX, and POX by 26%, 18%, 25%, and 20%, respectively, compared to the 

same treatment without the steroid. 

 

Figure 3. Activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), 

and peroxidase (POX) in tomato plants treated with 24-epibrassinolide (EBR) and subjected to lead 

(Pb) toxicity. Columns with different letters indicate significant differences from the Scott–Knott test 

(p < 0.05). Means ± SD, n = 5. 

3.5. Steroid Stimulates Oxidative Damage Reduction 

Treatment with Pb induced increases in oxidative compounds (Figure 4). On the 

other hand, the application of EBR in plants subjected to stress by Pb showed decreases of 

23%, 36%, 37%, and 8% in compounds O2−, H2O2, MDA, and EL, respectively, when com-

pared with the same treatment without EBR. 
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Figure 4. Superoxide (O2−), hydrogen peroxide (H2O2), malondialdehyde (MDA), and electrolyte 

leakage (EL) in tomato plants treated with 24-epibrassinolide (EBR) and subjected to lead (Pb) tox-

icity. Columns with different letters indicate significant differences from the Scott–Knott test (p < 

0.05). Means ± SD, n = 5. 

3.6. EBR Benefited Maintenance of Membrane Integrity of Chloroplasts and Alleviated the Pb 

Interference on Light Capture and Gas Exchange 

Plants exposed to Pb toxicity showed decreases in the values of Chl a, Chl b, Chl Total, 

and Car (Table 4). However, the combined treatment of Pb + 100 nM EBR promoted in-

creases in Chl a, Chl b, Chl total, and Car of 21%, 25%, 22%, and 29%, respectively, com-

pared to the Pb treatment. EBR instigated improvements in the capture of light energy. In 

chlorophyll fluorescence (Figure 2), Pb toxicity caused an increase in F0 and a reduction in 

Fv and Fv/Fm. However, plants exposed to Pb + EBR showed a decrease of 11% in F0 and 

increases of 6% and 4% in Fv and Fv/Fm, respectively, concerning the same treatment with-

out EBR. Treatment with 200 µM Pb showed no difference in Fm in the absence or presence 

of EBR. Plants exposed to Pb also showed decreases in ΦPSII, qP, and ETR and addition in 

NPQ, EXC, and ETR/PN (Table 4). However, the Pb + EBR treatment promoted increases 

in ΦPSII, qP, and ETR of 24%, 11%, and 24%, respectively, and reductions of 23%, 7%, and 

4% in NPQ, EXC, and ETR/PN, respectively, compared to the similar treatment without 

the steroid. Concerning gas exchange (Table 4), Pb caused negative effects. However, the 

Pb + EBR treatment stimulated increases of 29%, 18%, 26%, and 32%, respectively, in PN, 

gs, WUE, and PN/Ci and a decrease (5%) in Ci, when compared to plants exposed to Pb 

toxicity without EBR. 
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Table 4. Photosynthetic pigments, chlorophyll fluorescence, gas exchange in tomato plants treated 

with EBR and subjected to Pb toxicity. 

Pb EBR 
Chl a (mg g−1 

FM) 

Chl b (mg g−1 

FM) 

Total Chl (mg g−1 

FM) 
Car (mg g−1 FM) 

Ratio Chl a/Chl 

b 

Ratio Total 

Chl/Car 

− − 4.84 ± 0.14 b 2.05 ± 0.12 b 6.89 ± 0.17 b 0.67 ± 0.04 b 2.37 ± 0.16 b 10.27 ± 0.80 a 

− + 5.16 ± 0.16 a 2.38 ± 0.14 a 7.54 ± 0.12 a 0.78 ± 0.05 a 2.18 ± 0.18 b 9.70 ± 0.67 a 

+ − 3.60 ± 0.19 d 1.29 ± 0.11 d 4.89 ± 0.22 d 0.45 ± 0.03 d 2.79 ± 0.21 a 10.80 ± 0.84 a 

+ + 4.35 ± 0.17 c 1.61 ± 0.09 c 5.96 ± 0.21 c 0.58 ± 0.04 c 2.70 ± 0.14 a 10.29 ± 0.91 a 

Pb EBR ΦPSII qP NPQ 
ETR (µmol m−2 

s−1) 

EXC (µmol m−2 

s−1) 
ETR/PN 

− − 0.271 ± 0.006 b 0.378 ± 0.008 b 0.72 ± 0.02 c 39.86 ± 0.87 b 0.667 ± 0.008 c 2.75 ± 0.04 c 

− + 0.312 ± 0.005 a 0.417 ± 0.009 a 0.57 ± 0.03 d 45.81 ± 0.75 a 0.621 ± 0.008 d 2.73 ± 0.05 c 

+ − 0.200 ± 0.003 d 0.324 ± 0.007 d 1.06 ± 0.05 a 29.41 ± 0.47 d 0.740 ± 0.005 a 2.98 ± 0.04 a 

+ + 0.248 ± 0.006 c 0.361 ± 0.007 c 0.82 ± 0.03 b 36.39 ± 0.93 c 0.690 ± 0.009 b 2.86 ± 0.06 b 

Pb EBR PN (µmol m−2 s−1) E (mmol m−2 s−1) gs (mol m−2 s−1) Ci (µmol mol−1) 
WUE (µmol 

mmol−1) 

PN/Ci (µmol m−2 

s−1 Pa−1) 

− − 14.48 ± 0.43 b 2.88 ± 0.05 a 0.306 ± 0.021 a 275 ± 4 b 5.03 ± 0.23 b 0.053 ± 0.002 b 

− + 16.78 ± 0.41 a 2.94 ± 0.09 a 0.330 ± 0.022 a 262 ± 4 c 5.71 ± 0.18 a 0.064 ± 0.003 a 

+ − 9.87 ± 0.21 d 2.72 ± 0.07 b 0.222 ± 0.019 c 293 ± 6 a 3.63 ± 0.16 d 0.034 ± 0.001 d 

+ + 12.72 ± 0.19 c 2.78 ± 0.04 b 0.262 ± 0.020 b 280 ± 5 b 4.58 ± 0.20 c 0.045 ± 0.002 c 

Pb = lead; EBR = 24-epibrassinolide; Chl a = chlorophyll a; Chl b = chlorophyll b; Total chl = total 

chlorophyll; Car = carotenoids; ΦPSII = effective quantum yield of PSII photochemistry; qP = photo-

chemical quenching coefficient; NPQ = nonphotochemical quenching; ETR = electron transport rate; 

EXC = relative energy excess at the PSII level; ETR/PN = ratio between the electron transport rate and 

net photosynthetic rate; PN = net photosynthetic rate; E = transpiration rate; gs = stomatal conduct-

ance; Ci = intercellular CO2 concentration; WUE = water-use efficiency; PN/Ci = carboxylation instan-

taneous efficiency. Columns with different letters indicate significant differences from the Scott–

Knott test (p < 0.05). Means ± SD, n = 5. 

3.7. Limitations on Stomatal Performance Were Attenuated by EBR 

Pb excess provoked negative impacts on the characteristics of the stomata (Table 5). 

Plants exposed to Pb toxicity and treated with 100 nM EBR showed, however, increases 

in SD and SI, on the adaxial face of 13% and 13%; and in abaxial, 18% and 9%, respectively. 

In EDS, there was a 7% and 6% reduction in the adaxial and abaxial faces, respectively, 

compared to the equal treatment without EBR. 

Table 5. Stomatal characteristics in tomato plants treated with EBR and subjected to Pb toxicity. 

Pb EBR SD (Stomata Per mm2) PDS (µm) EDS (µm) SF SI (%) 

Adaxial face 

− − 14.37 ± 0.50 b 12.09 ± 0.38 b 21.08 ± 0.58 c 0.58 ± 0.05 a 11.96 ± 0.61 a 

− + 16.30 ± 0.98 a 11.73 ± 0.44 b 19.86 ± 0.55 d 0.59 ± 0.04 a 12.73 ± 0.89 a 

+ − 11.72 ± 0.77 d 13.46 ± 0.31 a 24.16 ± 0.81 a 0.56 ± 0.04 a 9.39 ± 0.53 c 

+ + 13.27 ± 0.59 c 12.86 ± 0.34 a 22.50 ± 0.74 b 0.57 ± 0.04 a 10.60 ± 0.64 b 

Abaxial face 

− − 32.21 ± 1.17 b 10.43 ± 0.35 b 19.75 ± 0.52 c 0.53 ± 0.04 a 21.71 ± 0.98 b 

− + 36.09 ± 1.26 a 10.14 ± 0.30 b 18.65 ± 0.49 d 0.54 ± 0.04 a 25.34 ± 1.07 a 

+ − 19.37 ± 1.02 d 11.51 ± 0.51 a 22.98 ± 0.61 a 0.50 ± 0.03 a 17.28 ± 0.62 d 

+ + 22.94 ± 1.05 c 11.25 ± 0.43 a 21.57 ± 0.74 b 0.52 ± 0.03 a 18.80 ± 0.70 c 

Pb = lead; EBR = 24-epibrassinolide; SD = stomatal density; PDS = polar diameter of the stomata; 

EDS = equatorial diameter of the stomata; SF = stomatal functionality; SI = stomatal index. Columns 

with different letters indicate significant differences from the Scott–Knott test (p < 0.05). Means ± SD, 

n = 5. All authors have read and agreed to the published version of the manuscript. 
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3.8. EBR Promoted Higher Biomass Accumulation 

The stress caused by Pb caused a reduction in the amount of dry matter (Figure 5). 

In contrast, the application of EBR in plants stressed by Pb increased the values of LDM, 

RDM, SDM, and TDM by 95%, 115%, 74%, and 92%, respectively, relative to the same 

treatment in the absence of EBR. 

 

Figure 5. Leaf dry matter (LDM), root dry matter (RDM), stem dry matter (SDM), and total dry 

matter (TDM) in tomato plants treated with 24-epibrassinolide (EBR) and subjected to lead (Pb) 

toxicity. Columns with different letters indicate significant differences from the Scott–Knott test (p 

< 0.05). Means ± SD, n = 5. 

4. Discussion 

Here, the various values we recorded in the Pb-treated plants demonstrate that the 

application of 200 µM of PbCl2 results in the uptake and accumulation of this metal in 

plants, mainly in the roots. However, the application of 100 nM EBR reduced the Pb con-

tent because this steroid is involved in regulating the electrical characteristics of mem-

branes, cell membrane permeability, and ion transport [55], possibly inhibiting uptake 

and accumulation by stimulating processes that act on immobilization, sequestration, and 

precipitation of this heavy metal [56]. Rossato et al. [57], testing progressive Pb concentra-

tions in Pluchea sagittalis plants, observed increases in the content of this metal in the root, 

stem, and leaf. Evaluating Pb stress in Acutodesmus obliquus, Talarek-Karwel et al. [58] 

identified a reduction in Pb content after EBR application. 

EBR application alleviated the loss caused by Pb toxicity in the nutritional content, 

increasing the values of macronutrients (Mg, K, and Ca) and micronutrients (Cu, Zn, and 

Mn). These elements play essential roles in plant metabolism, being required as constitu-

ents of crucial molecules or as cofactors of various enzymatic processes. A high concen-

tration of Pb can cause an imbalance in the absorption, assimilation, and translocation of 
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nutrients through changes in the permeability of the plasma membrane and influence the 

processes involved in the transfer of these elements across the root membrane [59], which 

is consistent with the reduction in the root structures of plants exposed only to Pb we 

detected in our study. After absorption, Pb binds to the membrane and cell wall, which 

induces rigidity to these components and reduces cell division, inhibiting the growth of 

root tissues [55]. On the other hand, EBR plays an important role in signalization, regula-

tion, and differentiation of the root tissue, inducing increments in root structures after the 

application of this steroid, especially in RET, RDT, and RMD, being these results clearly 

connected to the protection of this organ against the deleterious effects occasioned by the 

Pb [60,61], as well as benefits on nutritional status confirmed by the increase in the macro 

and micronutrient contents. Yuan et al. [62] found that the application of EBR helped to 

maintain the ionic balance in Cucumis sativus plants under Ca stress. Pisum sativum plants 

exposed to Cd stress [63] also demonstrated beneficial effects on nutritional status with 

EBR treatment. Santos et al. [64] researching Zn-induced stress in Glycine max, detected 

increases in the root structures after applying 100 nM of EBR. 

Plants treated with EBR after exposure to Pb stress had increased enzyme activities 

(SOD, CAT, APX, and POX). The enhanced activities of the SOD, POX, and CAT enzymes 

are probably associated with the upregulation of gene expression of the SOD, POX, and 

CAT encoding genes [65]. BRs participate in the processes of gene expression, transcrip-

tion, and translation in normal and stressed plants, stimulating increased activity of anti-

oxidant enzymes in scavenging excess ROS, probably up-regulating the mRNA expres-

sion levels of Cu/Zn-SOD, Mn-SOD, CAT, APX, or specific genes, such as RBOH (respir-

atory burst oxidase homolog), MAPK1 (mitogen-activated protein kinase 1), and MAPK3 

(mitogen-activated protein kinase 3) [66,67]. These findings are also connected with a pos-

itive balance in the nutritional status promoted by EBR since nutrients such as Zn, Cu, 

and Mn, which had their contents elevated after steroid application in this study, act as 

cofactors of SOD isozymes [68]. Zhou et al. [69] studying Vitis vinifera plants under Cu 

stress, detected enhanced enzyme activities with the EBR pretreatment. Similar results 

were described by Kohli et al. [70] with Brassica juncea seedlings under Pb stress had in-

creased SOD, CAT, APX, and POX activities in response to EBR supplementation. 

Pb toxicity induces molecular damage through the formation of ROS, such as O2- and 

H2O2, implying modifications to membrane structure and function, starting lipid peroxi-

dation, and altered cell biochemical processes [71], consequently resulting in oxidative 

damages to membrane lipids, proteins, chloroplast pigments, enzymes, and nucleic acids 

[72], which was identified in this research by increases in oxidative compounds found in 

plants exposed to 200 µM Pb. Plants respond to excess ROS by inducing enzymatic anti-

oxidants like SOD, CAT, APX, and POX that operate synergistically to repress metal tox-

icity [73]. Simultaneously, EBR works by eliminating these ROS in cells by regulating a 

complex antioxidant mechanism, stimulating the activity of these enzymes [74], where, in 

a simplified way, SOD acts as the first line of defense to counter the O2− and catalyzes the 

conversion of O2 to H2O2, then H2O2 can be eliminated by CAT, POX, and APX, and broken 

into H2O and O2 [68]. This effect of EBR was observed in our study through the reductions 

of O2−, H2O2, MDA, and EL triggered by the increases found in the enzymes SOD, CAT, 

APX, and POX. Brassica napus plants presented increases in oxidative compounds under 

Pb stress conditions [75]. On the other hand, in research by Kohli et al. [76] studying Bras-

sica juncea plants exposed to Pb had reductions in O2−, H2O2, and MDA after EBR applica-

tion. 

Treatment with EBR in plants alleviated Pb stress on photosynthetic pigment content 

(Chl a, Chl b, total Chl, and Car). Photosynthetic pigments have high sensitivity to toxic 

metals, such as Pb, because its excess is related to the peroxidation of chloroplast mem-

branes, which can provoke a deterioration of light-harvesting pigments and induces harm 

to the reaction center pigments [18,77]. Moreover, the disturbance caused by Pb on Chl 

content may be ascribed to the inhibition of its biosynthesis, the impaired uptake of es-

sential ions such as Mg, Cu, and Mn, and the increased chlorophyllase (CHLASE) activity 
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that catalyzes chlorophyll degradation [19,78]. However, EBR promotes an increase in 

chlorophyll content because it is directly or indirectly involved in the up-regulating Chl 

biosynthesis enzyme activity or the stimulation of gene expression levels related, for ex-

ample, to Chl a/b binding protein-encoding [79]. In addition, this steroid attenuated these 

toxic effects of Pb on chlorophyll molecules through the improvements promoted in oxi-

dative compounds and nutritional status, identified in this study by the reduction of MDA 

and EL and the increases in the contents of Mg, Zn, and Cu. In research by Kohli et al. 

[65], working with Brassica juncea plants under Pb toxicity obtained increased photosyn-

thetic pigment content and decreased CHLASE gene expression after treatment with EBR. 

Similar to this study, EBR also showed positive effects on Chl a, Chl b, total Chl, and Car 

in a study conducted by Zhong et al. [24] with Festuca arundinacea plants subjected to Pb 

stress. 

EBR application relieved the damage generated by Pb excess in F0, Fv, and Fv/Fm. Pb 

harms the efficiency of PSII photochemical reaction and electron transport chain, resulting 

in decreases in Fv/Fm, which may also be connected to impaired QA oxidation, further 

causing a decrease in electron transport from PSII to PSI [80]. The variable Fv/Fm is related 

to the functional state of the oxygen evolution complex and can be used as a sensitive 

indicator of photosynthetic performance, and when found at low levels, together with 

higher levels of F0, it indicates extensive photoinhibition due to environmental stresses 

[81]. In contrast, EBR can increase Fv and Fv/Fm and reduce F0 values, diminishing the pho-

toinhibition effects and decreasing the dissipation of excitation energy in the antennas of 

photosystem II [61]. Similar to our research, Guedes et al. [32] describe increases in Fv, 

Fv/Fm, and decrease in F0 after application of 100 nM EBR in Oryza sativa plants exposed to 

200 µM Pb. Tadaiesky et al. [82] working with Oryza sativa plants under Fe stress, reported 

that EBR also promoted improvements in F0, Fv, and Fv/Fm. 

Plants exposed to excess Pb treated with EBR showed beneficial effects on chloro-

phyll fluorescence with increases in ΦPSII, qP, and ETR and decreases in NPQ, EXC, and 

ETR/PN. These results are related to the improvements obtained by EBR in Fv, Fv/Fm, and 

F0 described in this study. Pb stress conditions can cause damage to electron transport, 

absorption, and conversion of light energy, photochemical efficiency of the reaction cen-

ter, and dissipation of excess energy in the photosynthesis process, especially in PSII ac-

tivity [83]. Studies evaluating the toxicity caused by Pb suggest that the absorption and 

dissipation of energy within the PSII are high, while the capture and transport of electrons 

are reduced due to instability of Chl molecules or damage to the electron transfer system 

[84]. Despite that, EBR can stimulate the electron flux and improve the efficiency of the 

PSII, probably associated with the oxidation of QA, which receives and transfers electrons 

between PSII and PSI, as well as avoiding damage caused by excess energy in the reaction 

centers [28,85]. Alam et al. [86] related increases of 50% in ΦPSII and 81% in qP and decreases 

of 37% in NPQ after treatment with EBR in Glycine max seedlings under NaCl stress. Re-

sembling our study, Santos et al. [87] evaluating seedlings of Vigna unguiculata exposed to 

Cd stress, found increases in ΦPSII, qP, and ETR, and reductions in NPQ, EXC, and ETR/PN 

after application of 100 nM EBR. 

Pb toxicity causes modifications in photosynthesis due to disruption of photosyn-

thetic pigments synthesis, injury of chloroplast ultrastructure, changes in lipid and protein 

composition of the thylakoid membrane, imbalance minerals uptake, restricted electron 

transport, inhibited activities of Calvin cycle enzymes, besides deficiency of CO2 in the 

result of stomatal closure [88,89]. On the other hand, plants treated with EBR and submit-

ted to stress Pb-induced showed increases in PN, gs, WUE, and PN/Ci and a decrease in Ci. 

These responses may be related to the steroid’s role in promoting higher efficiency of PSII 

and probably better fixation of CO2 in the Calvin–Benson cycle by the RUBISCO enzyme 

during photosynthesis, also suggested by the increase in PN and reduction in Ci [90]. Zhou 

et al. [91] examining Robinia pseudoacacia seedlings under Pb stress, observed that the val-

ues of PN and gs decreased with the progressive increase in the metal. In a study with 
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Glycine max seedlings under Mn stress, increases in PN, gs, WUE, and PN/Ci and decreased 

Ci after EBR application have been reported [9]. 

Reports have shown that the anatomical structure is altered by Pb toxicity through 

disturbance of external and internal tissues, which can lead to the collapse of parenchymal 

cells [92]. However, EBR spray revealed ameliorations on leaf structures with increases in 

ETAd, ETAb, PPT, and SPT. Increases in ETAd and ETAb are associated with the benefits 

promoted by EBR through stimulating cell division and expansion in the leaf as a strategy 

to avoid excessive water loss during the transpiration process, which was observed in the 

increase in WUE in our research [14,93]. As regards improvements in PPT and SPT, the 

increase is linked to the positive effects of EBR on gas exchange in this study, mainly in 

PN and PN/Ci, since the higher thickness of these tissues indicates better use of light energy 

and greater accumulation of CO2. Santos et al. [94] investigating Fe stress, verified addi-

tions on the ETAd, ETAb, PPT, and SPT variables in Glycine max seedlings treated with 

EBR. 

The positive effects promoted by EBR found in the stomatal characteristics, through 

the increases in SD, EDS, and SI in plants under Pb toxicity, are correlated to the role of 

this steroid in improving stomatal performance. Furthermore, EBR stimulates stomata 

production by regulating specific proteins that act in the stomatal pathway [95]. These 

results are also reinforced by the fact that increased stomatal density is linked to stomatal 

conductance and increased intercellular spaces, thus increasing CO2 uptake and photo-

synthesis, which can be corroborated by increases in gs, PN and SPT, and decreases in Ci, 

obtained in our research with EBR application [96]. Ribeiro et al. [97] working with Euca-

lyptus urophylla seedlings exposed to Ni stress, described increases in SD, EDS, and SI var-

iables after EBR treatment. 

EBR positively modulates growth in Pb-stressed plants through increments in LDM, 

SDM, RDM, and TDM, mitigating the toxic effects of this heavy metal. Pb toxicity causes 

damaging effects on the growth and biomass of plants since excessive amounts in the in-

tercellular space of this metal aggravated ultrastructural injury to leaf, often leading to 

cell death through disruption of chloroplasts, obstruction of chlorophyll biosynthesis, and 

interfering with nutrient elements transportation and photosynthetic machinery [20,98]. 

In contrast, as noted in the results of this work, EBR is involved in multiple roles in plants, 

relieving stress by restoring redox balance, stimulating pigment biosynthesis, promoting 

benefits in leaf anatomy, and improving chlorophyll fluorescence and gas exchange. Fa-

riduddin et al. [99] reported increased biomass in Brassica juncea plants treated with EBR 

and exposed to Mn toxicity. Jan et al. [100] described biomass improvements by analyzing 

the effect of EBR on Solanum lycopersicon plants exposed to Cr toxicity. 

5. Conclusions 

This study demonstrates the interferences caused by Pb stress in tomato plants. On 

the other hand, our results in leaf anatomy, photosynthetic apparatus, and biomass con-

firm the positive action of the exogenous application of 100 nM of EBR. This steroid atten-

uates leaf tissue cell disruption by stimulating cell division and expansion, making this 

structure thicker, improving membrane selectivity, promoting greater use of light energy 

and, consequently, higher fixation of CO2. Additionally, EBR induced increases in the ac-

tivity of antioxidant enzymes (SOD, CAT, APX, and POX), reducing membrane oxidative 

damages, thus preserving the chloroplast ultrastructure, being demonstrated in the re-

ductions of oxidative compounds (O2-, H2O2, MDA, and EL) and maintenance of photo-

synthetic pigments. The improvements obtained in these pigments made it possible to 

reduce the instability of Chl molecules caused by the excess of Pb, increasing the capture 

and transport of electrons, improving the efficiency of PSII, and mitigating the damage 

caused by photoinhibition. Simultaneously, the benefits provided by EBR in the photo-

synthetic apparatus resulted in increments in the accumulation of biomass. Therefore, this 

research shows evidence of EBR’s ability to alleviate the harmful effects of Pb toxicity in 

tomato plants. 
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GENERAL CONCLUSIONS 946 

This research strengthens the importance that EBR has in the mitigation damage caused 947 

in tomato plants subjected to Ni and Pb toxicity through protecting the photosynthetic 948 

machinery, upregulating the antioxidant system and improving anatomical structure. EBR 949 

induces the maintenance of chloroplast membrane integrity, the synthesis of chlorophyll 950 

content and the photosynthetic efficiency of electron transport. This steroid alleviates the 951 

oxidative stress induced by these HMs by stimulating enzymes linked to redox 952 

metabolism, such as SOD, APX and POX, which are involved in the detoxification of 953 

reactive oxygen species, including superoxide and hydrogen peroxide. This steroid 954 

attenuates cellular degradation of leaf tissue by stimulating cell division and expansion, 955 

making this structure thicker, improving membrane selectivity, promoting greater use of 956 

light energy and fixation of CO2, consequently also improving photosynthetic efficiency. 957 

All steroid functions converge towards improving nutritional status and increasing 958 

biomass, which was observed in our results. However, in future studies, advanced 959 

molecular approaches are necessary to better determine the mechanisms of action of EBR 960 

in plants under Ni and Pb toxicity. 961 


