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Abstract 

This paper discusses four algorithms for detecting anomalies in logs of process 
aware systems. One of the algorithms only marks as potential anomalies traces 
that are infrequent in the log. The other three algorithms: threshold, iterative 
and sampling are based on mining a process model from the log, or a subset of 
it. The algorithms were evaluated on a set of 1500 artificial logs, with differ- 
ent profiles on the number of anomalous traces and the number of times each 
anomalous traces was present in the log. The sampling algorithm proved to be 
the most effective solution. We also applied the algorithm to a real log, and 
compareci the resulting detected anomalous traces with the ones detected by a 
different procedure that relies on manual choices. 

Keyiuords: anomaly detection, process mining, process-aware systems 

1. Introduction and motivation 

Process aware information systems (PAIS) are "a software system that man- 
ages and executes operational processes involving people, applications, and/or 
information sources on the basis of process models" [16]. In this paper we are 
interested in systems in which the execution of said processes are not predefined 
beforehand. Such systems fali within the ad-hoc and loosely framed systems 
described in[16]. The central aspect of such loosely framed system is that the 
people that are executing the activities are in control to decide how the case will 
proceed next, in order to achieve the goals for the case. Such loosely framed 
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system include flexible workflow systems, case handling systems, and scientific 
workflows. 

These system allow for more control by the people executing the process, 
and are a possible solution to what has been called the inflexibility of workflow 
systems [24, 32]. But such flexibility may come with a cost. Systems that are 
not under control of a pre-specified process model may be subject to frauds and 
errors. Detecting such cases of frauds, exceptions and errors, which we will call 
anomalies, is the goal of this research. 

From the point of view of this research, the execution of a case or an instance 
of a process is a sequence of activities that were executed on the behalf of that 
case. Thus the case "the firing of John Jacob Jingleheimer Schmidt" is a instance 
of a process of "firing", and for Mr. Schmidt case the following activities were 
executed: "inform Mr. Schmidt", "calculate balance due", "explain severance 
benefits" and so on. In this paper, activities are considered atomic and their 
duration is not important, thus the set of activities executed can be seen as a 
seqiLence. Furthermore we will not attribute meaningful names to the activities, 
but refer to them using single letter names. Thus, Mr Schmidt firing case is seen 
as the sequence of activities abcbd, for example. Such sequences of single letter 
activities are called traces. The set (or better the multiset) of traces from which 
one is trying to identify the anomalies is called a log. Each trace can appear 
many times in the log, and thus the multiset, and each time a particular trace 
appears in the log is called a trance-instance. 

This research presents results in detecting anomalies in logs of execution of 
PAIS, where the anomaly is detected solely based on the sequence and choices of 
activities that took place in that anomalous execution. Thus, using the example 
above, one would detect that Mr Schmidt firing was anomalous because the 
particular sequence abcbd of activities was too different from the sequences of 
activities for ali or most of the other firing cases. For example, it may be the case 
that the activity "terminate Mr Schmidt system access" was performed much 
later than usual, which could indicate either that the system administrator was 
not properly trained regarding the security policies, or that there was a collusion 
to allow Mr Schmidt access to data he no longer should access. 

Of course, the anomalous nature of a case may be derived from the values 
involved in some of the activities, (for example, Mr Schmidfs health benefits 
remain active for 300 month after his firing), or because of the people who 
executed some of the activities (for example, the system access termination 
activity was executed by a sênior vice president), or because of time to perform 
an activity or the whole process was greater or less than normal (for example, 
the calculation of balance due was faster then normal). We call these examples 
as data, organizational, and time anomalies, to match the other four aspects of 
process models [35]. This research is restricted to control flow anomalies. 

1.1. Towards a definition of anomalous trace 
Anomalous traces, once discovered, must be analyzed to find out if indeed 

they are examples of incorrect executions or if they are acceptable executions, 
and if they are found to be incorrect executions, the reasons for and consequences 
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of these executions must be further investigated. Thus, the algorithms discussed 
in this paper must be used as a first automated step towards a more comprehen- 
sive security auditing practice for flexible or loosely framed PAIS. This places 
some constraints for the algorithms. If we focus on a fraud perspective - that 
is, that the anomalous traces are a possible indication of frauds, then missing 
any of the potential fraudulent executions has serious consequences. Thus, the 
algorithms to detect the anomalous traces must have a very low false negative 
rate. The false negative cases are traces that the algorithm flagged as negative 
(or "normal") and that attribution was wrong. Such false negative cases will 
not be forwarded to the specialists that would determine that the trace was 
indeed a fraud and take the appropriate measures. On the other hand, given 
that this human analysis of whether an anomalous trace is indeed a fraud is 
a costly process, one would also prefer if the algorithms had low false positive 
rates - that is, the number of cases that are mistakenly flagged as anomalous 
when in fact they are not - should also be kept low. But a low false positive 
rate is less important than a low false negative rate. 

If the anomalous traces are interpreted as errors, either erroneous execution 
or erroneous logging of the processes, then the unbalance of costs between a false 
negative and a false positive is less severe. A false negative will not generate 
the loss of revenue that an undetected fraud usually will incur. Therefore under 
this perspective a more even balance between false negative and false positive 
rates should be aimed at. In this paper we will also explore this alternative. 

Finally, let us address the issue of what is an anomalous execution of a pro- 
cess. Chandola et al [9] in an important survey on anomaly detection, discuss 
that there is no formal definition of anomaly, only intuitions that guide the de- 
velopment of different algorithms and techniques. For example, one may have 
the intuition that "normal" data falls "together" (in some appropriate distance 
metric) and that anomalies are "spread appart". This intuition based on dis- 
tance leads to the development of many algorithms based on nearest neighbor 
[9, Section 5]. If on the other hand, one has the intuition that anomalies are 
data points that have low probability of occurring (given the appropriate gen- 
erative model for the "normal" data), this intuition leads to the development of 
family of techniques described in [9, Section 7] as statistical detection models. 

The same apply to our research: we have no formal definition of an anoma- 
lous traces, but we have some intuitions that guided the development of the 
algorithms discussed herein. They are: 

• the set of executions can be partitioned into a set of normal and anoma- 
lous executions 

• each of the anomalous execution is "infrequent" among the set of ali exe- 
cutions, although the whole set of anomalous executions may not be that 
infrequent. 

• the process models that "explain" the executions in the normal set "make 
sense" 
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• the process models that could explain both the normal executions and 
some of the anomalous ones "make less sense" 

The terms "infrequent", "explain" and "make sense" need to be further 
refined if one wants to transform these intuitions into one or more algorithms. 
Nevertheless these intuitions can be formalized in some more precise notation, 
leaving the uncertainties confined into a few constants and relations. 

• given a set A of activity names 

• a trace t is defined as t e A* 

• a log L is defined as a multiset of traces L = {(í,nt)} where nt is the 
multiplicity of the trace in the log 

• the size of a log L is the number of trace-instances in it, that is V( í, nt) € 
L, size(L) = nt 

• the frequency of a trace t in the log L is defined as freqi(í) = 

• there exists a constant freqTOO;!, represents the term "infrequent", 

• there exists a relation "explain" between a process model M and a log L 
denoted by M h L 

• there exists a partial order "make more sense" between models denoted 
as Mi ^ M2 which indicates that Mi "make more sense" than Aío 

Now, our intuitions regarding anomalies can be pseudo-formalized as, given 
a log L 

• L can be partitioned into two multisets A (anomalous) and N (normal) 
such that A U N = L and An N = 0 

• V( a, na) G A, íreqL{a) < freqmax 

• let Mjv be the maximum under the partial order ^ of {M|M \- N} 

• and let Ml be the maximum under the partial order ^ of {M|M b L} 

• then M \ >- Ml 

1.2. Naive detection approach 

Before discussing these terms ("infrequent", "explain", and "make sense"), 
the intuitions above lend themselves to a first algorithm, which we call the naive 
algorithm. The naive algorithm resolves the problem of further defining the 
terms "explain" and "make sense" (or the relations h and ^) by avoiding them 
altogether. Using only the first two points in our intuition, the naive algorithm 
would select as anomalous ali traces that are infrequent in the log. This algo- 
rithm errs to the side of caution, that is, it will possibly flag a normal trace that 
happens to be infrequent as anomalous, but will not miss any anomalous traces. 
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This is a reasonable solution to the anomaly detection problem because as 
we discussed it results in zero false negative rate, which is the hard requirement 
for the algorithms. But likely, the naive algorithm will result in the largest false 
positive rate. Thus ali algorithms must be evaluated against the naive one, since 
it satisfy the hard requirement of the problem. 

1.3. Process mining and analysis 
Let us now go back to the terms "explain" and "make sense". For this paper, 

a process model "explains" a set of executions if the model was mined from the 
executions. The literature on proces mining will be reviewed in Section 4, but for 
this introduction it suffices to say that process mining are heuristic algorithms 
that generate a process model from logs, so that ali or most of the traces are 
instances of the model, that is, they are the result of following a particular path 
in the process model. 

As discussed in [43], process mining is not a well defined problem, since there 
are infinite process models that can generate a particular set of traces, and thus 
each mining algorithm searches and finds a particular solution in this space of 
possible process models. 

In a broad terms, process mining algorithms fali into two distinct categories, 
the ones that result in a process model that can generate ali traces from which it 
was mined, which we will call a precise mining, and the ones that only generate 
part of the traces, which we will call a noisy mining. The latter group would 
accept not to generate a few particular traces from the log if it considers that 
including those traces would make the resulting process model too complex or 
too general. In this case, such algorithms would consider the traces not included 
in the mined process as noise. 

But the noise traces are not totally unconstrained: they must be at least 
partially supported by the mined model, that is, the mined model must be 
able to generate most of each of the noise traces, but some of the activities in 
each of the noise traces may be incorrect (from the point of view of the mined 
model). Thus one may define metrics that relates a trace with a process model, 
usually referred as conformance of the trace in relation to the model, which 
measures how much of the trace is generated by the model. A conformance of 
one indicates that the trace is fully generated by the model, and thus it is an 
instance of the model. 

The "make sense" term seems to refer to a semantic aspect of the model and 
may require human analysis. For example, we know that it "makes little sense" 
to perform a request activity and approval of the request activity in parallel. 
Further information on security constraints ("ali requests must be folloiued by a 
corresponding approval"), or data dependencies ("the approval activity uses the 
data generated by the request activity") could indicate that the model "make 
little sense", but such information is not available for the anomaly detector. 
But there are other aspects of "make sense" that could be available to the 
system. They refer either to the structure of the model itself, regardless of 
what the activities in it mean, or refer to the relation between the model and 
the traces used to mine it. For example, regarding solely the model structure, 
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one may define a "make more sense than" relation among models that include 
components such as: 

• smaller models, that is, models with less connectives and activities, are 
preferred to larger models; 

• models with less repetition of activities are preferred to the ones with more 
repetition. 

The "make more sense than" relation can be then materialized into a metric 
for the model structure. In fact there is a growing research in process model 
metrics [42]. The idea of ordering process models regarding on how much they 
"make sense" is called appropriateness by [29] and it is measured using behavioral 
and structural perspectives. 

Regarding the relation between the model and the log it was mined from, 
one may prefer models that are neither too specific or too general in relation to 
the log. The terms overfit and underfit have also been used to refer to models 
that are too specific or too general. A model is too specific if the set of execution 
traces it can generate and the set of traces in the log are exactly the same. This 
by itself is not a problem as the term overfitting would suggest for the reader 
familiar with the machine learning literature. 

In machine learning, overfitting refers to models that are too specific to the 
data they were trained on and thus have accuracy for classifying new data lower 
than expected. Thus in machine learning, overfitted models do not generalize 
well. This is not exactly the problem in process mining, since there are no new 
traces to classify as either being or not an instance of the mined process. The 
problem is that the most specific (precise) model that can be mined from a set 
of traces is an OR of each of the traces, and that model will "make less sense" 
from a structural point of view, because it is too large and it has too much 
duplicaiion of activities. 

A model underfits the log if there are too many traces allowed in the model 
that are not present in the log; in this case the model is said to be too general. 
But this comparison cannot be naively performed - a process model that contains 
a loop will generate an infinite number of traces, and the log must be necessarily 
finite, and thus there will always be too many possible execution paths in the 
model that are not represented in the log. 

There is no agreed upon definition of what is exactly the correct balance 
between specificity or generality, and each mining algorithm will implement 
either implicitly (as most do) or explicitly a particular balance between the 
two extremes of specificity and generality. More precisely, there is an usually 
implicit partial order ^ between not just process models by itself, but between 
a pair of a model and log from which it was mined, that is, (Mi, L) ^ (M2, L), 
and the mining algorithm will search for the model that will result in one of the 
maximum for a particular log. 

We can now return to the problem of detecting anomalies. According to our 
intuitions described above, one must define the terms "infrequent", "explain", 
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and "make sense" (or the constant freqma;r, and the relations h and to be 
able to define some algorithm to detect anomalies. In this research: 

• freqma;r is arbitrarily defined to be 2% (and also 5%) 

• the relation h is actually the relation "was mined from" that relates models 
with logs, under different algorithms for process mining 

• we make no specific contribution to propose a particular definition of 
but instead we use whatever definition that was implicitly or explicitly 
defined in the mining algorithm. 

1.^. Objective and outline 
This paper proposes and compares three algorithms for anomaly detection 

of process executions. The first algorithm is the threshold algorithm. The 
algorithm is called threshold because it will consider as anomalous ali traces that 
has a conformance with the mined model below a certain threshold. The second 
algorithm is the iterative algorithm, which is an extension of the threshold 
algorithm into an iterative procedure. At each iteration, only the trace with 
lowest conformance is considered an anomaly, and removed from the mining 
process in the next iteration. The third algorithm is the sampling algorithm. 
The algorithm is based on the following materialization of the basic intuitions: 
since anomalies are infrequent, a random sample of the trace-instances from the 
log will likely not include an anomaly. Then, models mined from this sample 
will probably not include the anomalies as instances,and traces that are not 
instances of this model can be considered anomalies. 

These algorithms have many parameters that must be adjusted. The thresh- 
old algorithm must decide on a particular process mining algorithm, the metric 
to measure the conformance of a trace and a model, and the threshold value 
itself. The iterative algorithm also must define the mining algorithm, the con- 
formance metric, and a stopping condition of iteration. Finally, the sampling 
algorithm must choose not only the mining algorithm but also the proportion 
of the traces that will be sampled. 

In this paper, the definition of these parameters was achieved by a grid 
search on their values, using an artificially generated set of traces (for which we 
know which ones are the anomalies), and the final comparison of the algorithms 
was performed on a different but also artificially generated set of examples. 

This paper is organized as follows: section 2 presents the algorithms for 
detecting anomalies; section 3 presents the algorithm to generate the artificial 
logs, and the evaluation of the algorithm on these logs. Section 4 discusses the 
related literature and compare, when possible, our approach to others. Section 5 
discusses the limitation of this work. 

2. Anomaly Detection Algorithms 

2.1. Threshold Algorithm 
The central idea of the Threshold algorithm is to explore the implicit relation 

^ defined by noisy process mining algorithms. Remember that a noisy miner 
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will prefer to build a "better" model (under even at the cost that some of 
the traces in the log will have a low conformance to the mined model. Thus, it 
is possible that the traces that the algorithm considered noise are exactly the 
anomalous ones. 

Algorithm 1 presents the Threshold algorithm. There is only one change 
regarding the basic intuition described above. If a trace is a candidate for 
anomaly (that is, if the trace has frequency in the log of less than 2%), then the 
trace is removed from the traces given to the process mining (line 7); , and thus, 
it is more likely that a really anomalous trace will have very little conformance 
with the mined model. 

Algorithm 1: Threshold Algorithm 
Input: A log L 
Output: A set of anomalous traces TA. 
Parameter: A threshold conformance value: x <E (0,1). 
Parameter: A process discovery algorithm: mine. 
Parameter: A conformance assessment algorithm: conformance. 

i T =the set of ali classes of traces from the log L; 
2 Tc = {} used to contain the anomalous candidate traces; 
3 foreach í <E T do 

if freqr (t) < 2% then 
|_ Tc = Tc + {í}; 

6 foreach t e Tc do 
T' = T- {í}; M = mine{T')\ 
if conformance (Af,í) < x then 
L TA = Ta + {í}; 

return TA\ 

The Threshold receives three parameters, the mine function, a noisy pro- 
cess discovering algorithm, the conformance function, that computes the con- 
formance of a trace to a model, and the threshold value x. These parameters 
are not really inputs of the algorithm, since a user will have no way of deciding 
on them given a particular log. It is part of this research to show which choices 
of mine, conformance and x are the best ones. 

2.2. Iterative Algorithm 

The iterative algorithm (Algorithm 2) follows the ideas of the threshold algo- 
rithm, but instead of selecting ali traces with conformance below the threshold, 
it will select only the trace with lowest conformance as an anomaly, and repeat 
the process, until the minimum conformance trace is above a threshold. The 
idea is that the threshold algorithm must detect ali anomalies in a single step 
(by selecting ali traces that are below the threshold), and that may be too tax- 
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ing for the mining algorithm. The iterative algoritms selects one trace at a time 
as an anomaly, the trace with the lowest conformance. 

Algorithm 2: Iterative Algorithm 
Input: A log L 
Output: A set of anomalous traces TA. 
Parameter: A value x <E (0,1) for conformance threshold. 
Parameter: A process discovery algorithm: mine. 
Parameter: A conformance assessment algorithm: conformance. 

1 T -í—the set of ali classes of traces from the log L; 
2 Tc {} ; 
3 foreach í e T do 

if freqr (t) < 2% then 
[_ Tc e- Tc + {í}; 

r 
8 
9 

10 
11 
12 
13 
14 

6 repeat 
d min ^ 1 ? 
foreach t G Tc do 

T' — {£}; 
M G- inine(T/); 
cost conf ormance(M7í); 

Cmin ^ COSt, 

15 if Cmin < ^ then 
16 TA G- TA + {tmin}] 
17 |_ V V - 1: 

18 Until Cmin > X\ 

2.3. Sampling algorithm 

The sampling algorithm is based on the idea that a sample of the log should 
not contain an anomaly, since they are infrequent. Thus if one selects a sample of 
the log, mine the model from it, anomalies should not be instances of the model. 
Thus ali infrequent that are not instances of the mined model are considered 
an anomaly. For each candidate anomalous trace (Line 3), the algorithm is 
executed as follows: (i) get a sampling of traces from the log (Line 7); (ii) 
create a process model for this sampling (Line 8); and (iii) test if the candidate 
anomalous trace is an instance of the discovered model (Line 9). Anomalous 
traces are those traces that are not instance of the process model discovered in 
each iteration. 
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Algorithm 3: Sampling Algorithm 
Input: A log L 
Output: A set of anomalous traces TA. 
Parameter: A sampling size: s <E (0,1) 
Parameter: A process discovery algorithm: mine. 

1 T -í—the set of ali classes of traces from the log L; 
2 Tc <— {} used to contain the anomalous candidate traces; 
3 foreach í <E T do 
4 
5 

6 
7 
8 
9 

10 

if freqr (t) < 2% then 
[_ Tc e- Tc + {í}; 

foreach t e TG do 
S <r- sample of s% of traces of L; 
M mine(S'); 
if t is not instance of M then 

|_ TA e- TA + {í}; 

2.4- Implementation of the algorithms 
Ali algorithms presenteei in this paper are integrated with a set of process 

mining tools available in the ProM Framework. The ProM framework is a 
platform independent, open-source, "pluggable" environment for process mining 
[40]. The framework is flexible with respect to the input and output format, 
and it also allow for the easy reuse of code during the implementation of new 
process mining techniques. 

Ali algorithms discussed above are implemented as scripts that make calls 
to the appropriate ProM funetions. Both the mining algorithms and the con- 
formance funetions used in the algorithms are the ones available in the ProM 
framework. 

3. Evaluation of the algorithms 

We evaluated the three algorithms with a set of 360 synthetic logs, which 
have been created based on the traces of known process models randomly cre- 
ated. Two reasons influenced our choice for using synthetic data for assessment. 
First, there is no standard benchmark for anomaly detection of processes, and 
second, as [26] reported, even using logs from real processes, there are problems 
in labeling a trace as anomalous in real life situations. Therefore, to measure 
the efficacy of proposed algorithms one has to deal with artificial logs, where it 
is known which are the anomalous traces. 

The evaluation carried out in this work can be summarized in three steps, 
as follows: (i) the creation of the 360 random logs described in Section 3.1; (ii) 
the use of a small random subset of the logs to determine the best values for 
the parameters of the three algorithms (see Section 3.2); (iii) the use of the 
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remaining logs in the evaluation of the three algorithms together with the naive 
algorithm (in Section 3.3). 

3.1. Method for the creation of the logs 

The experiments were based on 360 logs with different configurations. First, 
we created 60 random process models. These models were created by randomly 
combining OR-blocks, AND-blocks, LOOP-blocks and sequences (with a higher 
probability of choosing sequences). The models were well balanceei, that is, 
blocks are always within other blocks. The models were created with 20, 35 and 
50 components - a component is an activity, or an AND-, OR-, or a LOOP-split. 
We verified that ali random models generated at least 10 different traces. The 
algorithm for the model creation is shown in Appendix A. 

The 60 models generated by the algorithm had on average 940 different 
traces (minimum of 10 traces, by construction, and a maximum of 28665 traces). 
The models had an average of 17.7 different activities per model (minimum 
of 9, maximum of 29). Finally, the average trace length was 21.19 activities 
(minimum trace size was 1 activity, and maximum trace size was 78). 

For each model, we generated a "normal" log as follows. We generated ali 
traces of the log, with ali loops repeated at most 2 times. We ordered these 
traces in a random order. For the first one, we selected a random number 
from 0 to 1000, with uniform probability. Let us call that number ni, which 
is the multiplicity of the first trace in the log. The second trace would have 
a multiplicity no randomly selected (with uniform probability) from 1000-ni 
to 1000. The third trace would have multiplicity randomly selected from the 
interval 1000-(ni + 7io) to 1000. And so forth until the interval reduces to 0. 

This procedure for generating a log will, on average, produce traces with an 
exponential distribution of frequencies. The expected multiplicity of the first 
trace is 500, for the second 250, for the third 125, and so on. The expected 
number of different traces in the log is 10 (and that is why we require each log 
to generate at least 10 different traces). 

To generate an anomaly we randomly selected one of two alternatives: 

• insert at a random place in the trace, an activity that is already present 
in the trace, or 

• remove a random activity from the trace. 

We verified that the anomaly generated by each of these two procedures was 
not an instance of the original model. 

Each model generated 6 different logs with different characteristics or profiles 
regarding the anomalies. The anomaly profile is a combination of how many 
different anomalous traces are in the log (one or two), and how many times each 
anomalous trace is repeated in the log (once, three, or five times). The 6 logs 
generated from each model had the following profiles: 

• one log had a single anomaly 

• one log had a single anomaly repeated three times 
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• one log had a single anomaly repeated five times 

• one log had two different anomalies, each occurring only once in the log 

• one log had two different anomalies, each occurring three times in the log 

• one log had two different anomalies, each occurring five times in the log 

The approach used to create the anomalous traces represents our intuitions 
that the anomalous traces are quite similar to normal traces. Our anomalous 
traces are based on the same set of tasks but with "small changes" in the order 
or number of times a particular activity is executed. Furthermore, our logs 
incorporate the possibility that a particular fraud was repeated, and that more 
than one fraud is present. Of course, these logs do not exhaust the possibilities 
of frauds in process aware systems, but we believe that these logs cover the 
"difficult to detect" frauds. 

3.2. Parameterization of Algorithms 
Ali the three algorithms discussed in Section 2 have parameters that need 

determining. To use the threshold algorithm one need to define the mining algo- 
rithm, the conformance metric, and the threshold value. As discussed, both the 
mining algorithms and the conformance metrics were the ones available in the 
ProM framework. We tested the alpha, alpha++, multiphase, and the heuristic 
mining algorithms. For conformance metrics we used fitness, behavioraf struc- 
turaf appropriateness, size metrics. For the threshold we used the values 0.5, 
0.7, and 0.9. The iterative algorithm has the same parameters, and the same 
choices were used. Finally the sampling algorithm has the mining algorithm as 
choice (and we tested the same four choices above), and the sample ratio. We 
tested the sample ratios of 20%, 50%), and 70%). 

We randomly selected 60 of the 360 artificial logs to determine these param- 
eters. For each detection algorithm we selected ali combination of parameters 
possible and measured the quality of the predictions regarding which were the 
anomalous traces in each of the 60 training logs. 

In order to discuss the quality metric, let us briefly review the standard 
metrics for a binary classifier. The classes of a binary classifier are usually 
referred to as "positive" and "negative". In our case, "positive" refers to being 
an anomaly, and "negative" to being a normal trace. Furthermore: 

• a true positive (TP) is an example (a trace in our context) that is classified 
as positive by the system and it is indeed positive. 

• a false positive (FP) is an example that is classified as positive by the 
system, but it is really a negative example 

• a true negative (TN) is an example that is correctly classified as negative 
by the system 

• a false negative (FN) is an example that is classified as negative by the 
system, but it is really a positive example 
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The standard metrics for quality of a binary classifier are: 

• accuracy = {T P + T N) / {T P + T N + FP + FN) 

• precision = T P / (T P + F P) 

• recall = TP/{TP + FN) 

In the case of this research, because of the emphasis on anomalies as frauds, 
as discussed, we want to the false negatives to be as small as possible, which 
implies that recall will be as close to 1 as possible. But using only recall as 
the metric of quality of the algorithms is inappropriate, since by definition, the 
naive algorithm will have recall equal to one. In this case, the naive algorithm 
will have the highest recall, but in turn it will result on the lowest precision - 
since ali infrequent traces will be marked as positive. The f-measure family of 
metrics tries to balance (with different emphasis) both precision and recall [41]. 
They are defined as: 

• f-measure = fl-measure = 2.precision.recall/(precision + recall) 

• f/3-measure = (1 +/32).precision.recall/(/32precision + recall) 

Fl-measure is the harmonic mean between precision and recall. The f/3-measure 
weights the recall by /? when performing the harmonic mean. For /? > 1, recall 
will be increasingly more important when performing the harmonic mean, the 
larger t /?. 

As we discussed above, under the fraud perspective, recall should be as high 
as possible, but precision should also be high. Thus we need a metric that places 
more emphasis on recall, and we arbitrarily opted for the f4-measure. But we 
will also report the fl-measure, accuracy, and recall. The accuracy calculations 
involve the true negative (TN) which will always be very high, so the figures 
for accuracy will be deceptively high. So we only report the accuracy for the 
candidate traces, that is, the traces with frequency lower than 2%. We also 
consider the fl- and f4-measures to be 0 when either precision or recall are 0. 

The resulting best parametrization of the three algorithms are: 

Threshold Quality of the solution with the best parameters: f4- 
measure=0.481, fl-measure = 0.319, recall = 0.533, and accuracy = 0.435. 

• Process discovery algorithm: alpha. 

• Process model evaluation algorithm: fitness. 

• Threshold factor: 0.9. 

Iterative Quality of the solution with the best parameters: f4-measure=0.204, 
fl-measure = 0.158, recall = 0.221, and accuracy = 0.522. 

• Process discovery algorithm: alpha. 

• Process model evaluation algorithm: appropriateness. 
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• Threshold factor: 0.9. 

Sampling Quality of the solution with the best parameters: f4-measure=0.913, 
fl-measure = 0.615, recall = 1, and accuracy = 0.501. 

• Process discovery algorithm: heuristic miner. 

• Sampling factor: 70%. 

3.3. Execuüon and Results 

The three algorithms, with the parameters defined in the previous section, 
were executed in the remaining 300 logs. The results are in Table 1. The 
statistical analysis of the results (One-way ANOVA followed by Tukey HSD 
[33]) show that the difference in fl-measure for the sampling and the naive 
algorithm is not significantly different (p-values = 0.784) and ali other differences 
are. Thus, in terms of fl-measure, the sampling algorithm is equivalent to 
the naive, followed by the threshold, and finally the iterative. In terms of 
fl-measure, the order is sampling, naive, threshold, and finally iterative (ali 
differences are significative). In terms of accuracy (for the candidate traces 
set), the order is iterative, sampling, threshold, and finally naive (the difference 
between threshold and sampling is not significative, ali other are). The table 
also report the average execution time per log. 

Table 1: Performance for execution of the algorithms on the test group. 
Threshold Iterative Sampling Naive 

F 4-measure 0.305 0.131 0.886 0.867 
F 1-measure 0.181 0.084 0.561 0.476 

Recall 0.345 0.147 0.993 1.000 
Accuracy 0.432 0.578 0.467 0.331 
Time (s) 22.5 51.9 28.6 0 

We also carried out an analysis to verify if there were a performance dif- 
ference among the algorithms when executed on logs of different profiles. We 
tested each algorithm only on (i) logs with one or two classes of anomalous 
traces and (ii) logs in which the same class of anomalous traces occurred once, 
three times, or five times. The results are not reported in this paper, but in each 
case the order of the quality of the algorithms (regarding the fl-measure) was 
the same, that is: sampling and naive are not statistically different, followed by 
threshold, and iterative. 

We also tested the sensibility of our results to an early decision, that is, 
that the cutoff frequency for anomalies was 2%. We ran the sampling and the 
naive algorithms with the cutoff frequency set to 5%) on the same 300 test logs. 
Notice that the true anomalies frequencies in the logs were the same, but now 
the algorithms would consider a much larger set of candidates (ali traces with 
frequency at most 5%)). The average fl-measure for the sampling algorithm was 
0.871, while for the naive was 0.841. The difference is significative (paired t-test, 
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p-value=4.54e-9). That is, the f4-measure for both algorithms reduced a little 
from the results with 2% cutofí, but now the sampling algorithm is significantly 
better than the naive. The same results are true for the fl-measure. 

Finally we experimented and compared the sampling algorithm (with the 
optimal parametrizations above) and the naive algorithm for the 300 test logs 
without anomalies The average number of (false) positives for the naive algo- 
rithm was 3.60 traces, while for the sampling the average was 2.82. The dif- 
ference is significative (paired t-test, p-value<2e-16). Thus, for logs in which 
there are no anomalies, the sampling algorithm returns significantly less false 
negatives than the naive algorithm, and thus reduces the cost of the necessary 
human analysis of those traces. 

3.4- Further experiments 

Before the experiments described above, we rim the algorithms with another 
set of logs. These logs were also randomly generated from a set of random mod- 
els, but these models were much simpler than the ones discussed above. In 
particular, these models were "smaller", that is, they contained less activities 
(at most 20 different activities in them), and they did not contain loops. Fur- 
thermore the process of generating the log, and in particular the multiplicity of 
each trace was different. For those models we associated a probability for each 
branch of an OR-split (in the same way as the stochastic information control 
nets proposed in [17]) and generated the traces based on those probabilities of 
choosing one or the other branch of each OR-split. 

For these logs, we followed the training/test protocol for the previous exper- 
iment. But since the modes were simpler, we generated many more logs, 300 
for the training, and 1500 for the test procedure. 

The first important result in this experiment is that the best parametrization 
of the algorithms were the same as for the experiments described in 3.2. This 
provide some evidence that the parametrization of the algorithm is stable across 
very different set of logs. This is important to a potential user of the algorithms 
since one will likely have very few logs, none of which will have known anomalies. 
Thus the user will not be able to use a separate set of logs to time the algorithms, 
and must rely on the parametrization discussed in this paper. 

The second important result is that although ali algoritms performed better 
with that logs (higher figures for the f4 and fl measures) the relative order of 
the algorithm remained the same, with the sampling algorithm outperforming 
the naive, which outperformed the threshold, which in turn was better than 
the iterative algorithm. Furthermore, in this case, the difference between the 
sampling algorithm and the naive was statistically significant. 

This result show that although the sampling algorithm had a similar result 
to the naive in the previous experiment regarding the f4-measure, it is likely 
that in general the sampling outperforms the naive. Besides the difference in 
performance regarding the f4-measure for this experiment, and the one with 5% 
cutoff, one should also consider that the sampling algorithm has better results if 
the costs of a false negative and a false positive are more balanceei, as measured 
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by the fl-measure, for example. If a false positive cannot be accepted, which 
would correspond to a foo-measure, then by design the naive algorithm is the 
best. At the balance represented by the f4, where recall is four times more 
important than precision, the sampling seems slightly better than the naive, 
sometimes with statistically equivalent results, and sometimes with significantly 
better results. 

3.5. Further analysis of the sampling algorithm 

Once we determined that the sampling algorithm is the best detector, we 
carried out some further analysis to discover the dependency of the algorithm 
performance on the different characteristics of the log such as: number of anoma- 
lous classes (one or two), number of anomalous occurrences (one, three, or five), 
and number of candidate traces (traces with frequency at most 2%). 

Number of classes of anomalies This characteristic influences the perfor- 
mance of sampling algorithm. The f4-measure for logs with only one 
anomaly class is 0.859, and for logs with two anomalies is 0.916. The 
difference is significative (t-test, p-value=3.4e-07). Thus the sampling al- 
gorithm performs better on logs with more classes of anomalous traces. 
The same is true for the fl-measure. 

Number of anomalous trace occurrences This characteristic does not in- 
fluence the performance of algorithm. The f4-measure for logs with only 
a single instance of each anomalous traces is 0.878, for three instances 
is 0.897 and for five instances 0.883. The difference is not significant 
(ANOVA test p-value=0.77). The same is true for the fl-measure. 

Number of candidate traces This is a characteristic that negatively influ- 
ences the performance of sampling algorithm, the larger the set of candi- 
date traces, the lower the performance of the algorithm. A linear regres- 
sion of the f4-measure and the size of the set of candidate traces yields a 
multiplicative coefficient of -0.049, and although this is a small value, it is 
significantly different than 0 (p-value = 3.5e-13). 

3.6. Example with a real log 

As an example of running the Sampling and Naive algorithm in a real log, 
we obtained the log used in [8] to illustrate another process anomaly detection. 
The log is derived from the different information systems used by a Dutch 
municipality to support handicapped and mobile restricted citizens. The log 
include ali complete traces that started and ended within the January 2007 to 
August 2008 period, and it contain 796 traces. The activities in the log may 
be grouped into 10 different activities; the longest trace has 12 instances of 
activities, the shortest has 5. On average the traces have 6 activities. 

The method proposed in [8] used a series of "filtering" and mining steps. 
The idea of the method is finding the "most appropriate model" that is mined 
from the log, and flagging as anomalous the traces with low conformance to 
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that model. But in the process of finding the most appropriate model one may 
remove ali instances of an activity from ali the traces in the log if the inclusion of 
that activity reduces significantly the appropriateness of the mined model. That 
is, the method loops through the steps of mining the most appropriate model 
(in that case using heuristic mining) and removing ali instances of one or more 
activities that makes the mined model particularly complex. [8] does not propose 
an automatic method to select the activities that are "causing" the complexity 
of the mined model, and thus that selection was necessarily performed by a 
specialist. Once the activity or activities are selected, ali instances of those 
activities are removed from ali traces. The process will then repeat the mining 
step, followed by further selection, until the resulting model has a high enough 
appropriateness (in that case 80%). 

The result of the most appropriate model method described in [8] to the 
Dutch municipality logs required the filtering out of two activities, and resulted 
in 6 traces as potential anomalies. Notice that we have no independent confir- 
mation that those 6 traces were anomalous, or that there was no other anomalies 
among the traces deemed "normal". Thus by using this log we are not provid- 
ing an independent measure of the accuracy (or other quality metrics) of the 
Sampling algorithm; we are showing that the sampling algorithm can be applied 
to a real log (one whose generation process may or may not be compatible with 
the one described in 3.1), and compare its results with a different algorithm for 
anomaly detection that is very costly since it demands human intervention in 
the scoping process. 

The Sampling algorithm generated 15 traces as potential anomalies, among 
them ali the 6 defined by the most appropriate model algorithm. The Naive 
approach generated the same 15 examples plus a new one. This shows that 
the Sampling algorithm returned a reasonable set of anomaly candidates when 
compareci with a different and more costly method. 

4. Related Work 

Data mining community has published a large and growing body of literature 
in anomaly detection. To cite a few that centers on the idea of fraud detection, 
[15] presents how data mining techniques can be used to early detect inside 
information in option trading. In [18] the authors present a system which is 
used to detect fraudulent usage of a cellular phone (cellular cloning). There 
are solutions concerned with the intrusion detection in networks [23, 25]. Other 
efforts are concerned with the detection of frauds in auctions or e-commerce 
sites [26]. None of these works deal explicitly with processes and traces, they 
refer only to the data values of the cases. 

^.1. Process mining 

Process mining is a method used to reconstruct a process model from a 
log generated by a system. Such a technology is an alternative to construct 
models from scratch, and in the last twelve years it has raised the attention 
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of researchers around the world [37, 12, 39]. For this work, process mining 
algorithms are important to help us find a model that will be used as a classifier 
of traces as anomalous or normal. 

The field of process mining was first coined in the context of software pro- 
cesses. Cook and Wolf [11] present a process discovery as a tool to support the 
design of software processes. Also a precursor work in process mining, the pa- 
per by Agrawal et al [3] present an algorithm that mine finite state models with 
three properties: completeness, minimality, and no redundancy. Complete in 
the sense that a process model may contain ali task and dependencies between 
them that there is in the log; minimal in the sense that the mined process has 
the minimum set of structural elements; and non redundancy in the sense that 
the process model does not play an instance by different ways. The properties 
of the mined process reported in this work are the first support to the "make 
more sense" relation among two processes models. 

Many process mining algorithms have been proposed in the last years [37, 39, 
38, 31, 22, 47, 21, 14, 43]. Of relevance to this paper is the distinction between 
precise and noisy mining algorithms. The precise algorithms will generate a 
model that includes ali traces in the log. The precise mining algorithms are 
usually based on on rewriting techniques [31, 43], but considering that some 
constraints in the log are satisfied, one may also consider the a-algorithm [39] 
as a precise algorithm. 

Noisy approaches will consider that some of the traces in the log are noise 
and need not to be included in the mined model. Noisy mining algorithms [3, 47, 
10, 27, 22, 21, 45, 46] in their majority use the frequency of the temporal order 
relation between two activities to infer their dependency, and thus infrequent 
dependencies in the log may not be modeled in the resultant process model. An 
exception to the frequency based approach is the work on genetic mining [14, 13] 
which uses a search based on genetic algorithms with an explicit representation 
of the ordering among models. 

As we mentioned, there has been some recent work on structural metrics on 
process models [29, 42] and on the relation between models and logs[44, 20, 19]. 
These works use the concepts of: (i) fitness[30, 28], which assess the portion 
size of the log that can be correctly played by the model, that is, the degree 
of completeness; (ii) behavioral appropriateness[28, 34], which measures the 
degree of predictability to support the execution of unseen trace in the log; (iii) 
structural appropriateness[28, 34], which assess the complexity of the process 
model; and (iv) appropriateness[8], which was suggested to be a balance between 
structural and behavioral appropriateness. 

4-2. Anomaly Detection in Process Logs 
There is a limited published work in detecting anomalies in process logs, 

besides our own [5, 4, 6, 8, 7]. Aalst and Medeiros [36] present two anomaly 
detection methods that are supported by a-algorithm. A drawback of this work 
is that it demands a known "normal" log, which is used to mine a process model 
that will classify the traces of an audit log. Instances with low conformance are 
the anomalous traces. However, a known "normal" log may not be available in 
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applications domains that demands a high flexible support because the normal 
instances change constantly. 

Yang and Hwang [48] present a framework for automatic construction of a 
model for detecting health care fraud and abuse. In that work clinicai pathways 
are used to construct a detection model, whose features are based on frequent 
control-flow patterns inferred from two datasets, one with fraudulent instances 
and other with normal instances. Similarly to approach reported in [36], data set 
of normal and fraudulent instances may not be available in some applications, 
which is clearly a serious limitation. 

Closely related to the algorithms reported here are the algorithms presenteei 
in [5, 4, 6]. However, because these algorithms are based on incrementai min- 
ing [43], they have severe scalability limitations, both regarding the number of 
activities in the traces, and the number of different traces in the log. Also, that 
work use the measure of number of changes that are necessary to include a trace 
into a model to identify anomalies (forcing an anomaly into the model will cause 
many changes to the model itself) while this work considers the difference of 
conformance between model and log. 

Accorsi et al [1, 2] present an approach for detecting illegal data flow execu- 
tion in business processes. These works propose a forensic analysis tool called 
RecIF, that constructs a graph of data flow among subjects (propagation graph) 
in a process. Then, a recorded set of polices are verified regarded compliance 
against the propagation graph constructed from the log. The output of process- 
ing are a set of evidences of frauds or deviations from polices. 

Although the work in [1, 2] have similarities with our anomaly detection 
approaches (e.g. model construction and conformance test), there exist one im- 
portant diflerences. Our work does not apply a direct conformance test method, 
because in our case there is no predefined polices or rules to test the confor- 
mance. The central aspect of our work is that there is no a priori known correct 
model. 

5. Conclusions and discussion 

Detection of anomalies are a growing research area. It has been realized 
that fraud and intrusion detection in systems, novelty detection in time series, 
bio-threats discovery, and other similar tasks are better understood as anomaly 
detection (see [9] for a list of current literature in each of these applications). 
Of course, fraud or intentional threats are not the only source of anomalies, but 
this has been the perspective adopted in this research. 

This work presenteei three new algorithms (threshold, iterative, and sam- 
pling) to detect "hard to find" anomalies in a process log based only on the 
control-flow perspective of the traces. This work does not deal with anomalous 
executions of processes that follow a correct execution path but deal with un- 
usual data, or are executed by unusual roles or users, or have unusual timings. 
We center our approach on the control-flow perspective alone. The anomalies 
are hard to find because they are similar to the normal traces themselves - there 
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is no unique characteristic in the anomalous traces that make them clifFerent 
from the normal logs except that they are not instances of the "correct" model 
that generated the normal traces. The anomalies are hard to find also because 
under the fraud perspective, they were intentionally made difficult to detect. 

The algorithms proposed in this research are based on the idea that anoma- 
lies are infrequent, although in our examples some normal traces are also infre- 
quent. In this research infrequent is arbitrarily chosen to the 2%. But, as we 
discussed in section 3.3, the results do not change much if we use a 5% cutofí. 

Among the three algorithms, the sampling algorithm with 70% sampling 
rate and heuristic mining was shown to be the one with better f4-measure (and 
fl-measure) to detect these anomalies. The result was achieved by testing the 
three algorithms together with a naive algorithm, that only selects as anomalies 
the infrequent traces, in 300 artificially generated logs (of a 1000 traces each) 
for which it was known which were the anomalies. The iterative algorithm is 
the best for the standard measure of accuracy. 

The sampling algorithm was also applied to a real log, for which we had 
no independent classification of which trace was anomalous, but the algorithm 
detected ali the anomalies detected by a different method that require user 
choices. Thus, the sampling algorithm can substitute a costly procedure to 
detect anomalies. 

There are two clear limits to this research. The first one is that we only 
adopt the control-flow perspective, and thus only traces that follow a "different 
path" from normal traces are detected. In real life, anomalies can be limited not 
only to the control-flow perspective, but also to the data, and organizational 
perspectives. But, the anomalies may also be due to the combination of these 
perspectives: a particular execution path may be used only when executed by 
sênior roles, so a particular trace that followed that path is not in itself anoma- 
lous, neither are traces whose activities were executed by júnior roles. But a 
trace that followed that path and had activities executed by a júnior role are 
anomalous, and this determination involved both the control-flow and the or- 
ganizational flow perspectives taken together. Other examples dealing with the 
other perspectives can also be constructed. Thus, the approach taken by this 
research is incomplete and should be understood as a stepping stone towards 
more complete methods. Even problems where the combination of perspectives 
is needed can benefit from a single perspective approach as described in this 
research - a simple and possible solution to problems that involve the combi- 
nation of perspectives is to combine simple anomaly detectors: ours for control 
flow data, and some others for say the data perspective, so that if any detector 
points out a trace as anomalous, it should be flagged as anomalous. This is a 
high recall, low precision approach that may be appropriate for some problems. 

The second limit of this research is a more technical one. How far should one 
generalize the main result of this paper - that the sampling algorithm achieves 
the best results in detecting the anomalies as measured in different metrics (f4- 
measure, fl-measure, and accuracy) - to other logs? The only strong claim 
we can make is that since out test logs were a random sample of logs from a 
population of logs created with the method described in section 3.1, and since 
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the sampling algorithm performed significantly better than the alternatives for 
that sample, then one can conclude (with 95% confidence) that it will perform 
better in any other subset of that population. Any other conclusion is a leap 
of faith, which depends on the reader's belief on how representative are our 
artificial logs regarding "real" logs. If the logs used here are representative of 
future logs, one can be more sure that the couclusious discovered iu this paper 
will hold for these other logs. 

There are at least two compoueuts to determiuiug how representative the 
logs are: how realistic are the models and how realistic are the distribution of 
the multiplicities of traces in each log. Unfortunately, we have no other source 
than our own intuitions regarding both. We described in details the model 
generation algorithm (section Appendix A) and the statistics of the generated 
models (section 3.1) so that the reader can evaluate how similar our models 
are to his or her own problems. For example, our traces were on average 21 
activities long. If the one is planning of using our results in logs with traces of 
hundreds of activity long, one should be less confident that the results will hold. 

The second component is the distribution of the multiplicity of the traces. 
Our distribution is very unequal, with an expected exponential distribution. If 
one's distribution is more uniform, with ali traces having similar frequencies, 
than one should be less confident that the results will hold. In particular, in the 
case of uniform distributions, the naive algorithm should have a much better 
performance. 

Finally, the models and the logs used in this paper are available online3, so 
that researchers can propose new algorithms and fairly compare them to ours, 
and future users of our algorithms may evaluate if our models and logs are 
representative of the models and logs they will face in their problems. 
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Appendix A. Model generation algorithm 

Since the models are well-balanced, that is, ali blocks are within other blocks, 
we use a linear representation of models. seq(A,B). represents the sequence of 
a sub-workflow A followed by the sub-workflow B. or(A,B) represents an OR- 
split/join: the two branches are A and B. and(A,B) represents a AND-split/join 
of the two branches A, and B. Finally, loop(A,B) represent the loop that will 
either execute only A, or A followed by B and then by A (ABA), or ABABA, 
and so on. 

The algorithm 4 is a stochastic algorithm that must make random choices 
at certain points. We use the notation switch randomly choose do to indicate 
a choice point in the algorithm, and case 40% and otherwise to indicate the 
probability of each choice. case 40%) A indicates that with probability 0.40 
the choice A must be followed. otherwise indicates the probability that is 
necessary so that ali the probabilities of the choices of a switch add up to 1. 

Finally, the auxiliary function rndsplit(n) generates two integers «i and 
no, both positive, so that ni + no = n. 
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25 

26 
27 
28 

29 
30 
31 

gorithm 4: Algorithm to generate models 
aput : n 
utput: A model of size n 

i n==0 then 
return e; 

Ise if n==l then 
return generate a new activity; 

Ise 
switch randomly choose do 

case 60% 
ni,n2 •<— rndsplit O-i); 
return seq(CreateModel (ni),CreateModel («2)); 

otherwise 
switch randomly choose do 

case 40% insert activity 
a generate new activity; 
return seq(a,CreateModel (n — 1); 

case 30% insert OR 
switch randomly choose do 

case 30% empty branch 
^ return or(CreateModel (n- !),£); 

otherwise 
ni,n2 rndsplit 0-1); 
return or(CreateModel (/ri),CreateModel 
O2)); 

case 20% insert LOOP 
switch randomly choose do 

case 30% empty branch 
^ return loop(CreateModel O —1)0; 

otherwise 
ni,n2 rndsplit 0-i); 
return loop(CreateModel (/ri),CreateModel 
O2)); 

case 10% insert AND 
ni,n2rndsplit 0-i); 
return ancl(CreateModel (/ri),CreateModel («2)); 
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