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Abstract. This work presents the idea and a prototype of workflow
systems defined through constraints. We think that in many domain
areas, such as health care, workflow systems are too inflexible. One does
not know in advance what activities does the patient has to go through.
Actually a new form of interaction with the workflow is needed, in which
a controller asks the systems which precondition activities are necessary
in order to execute a target activity and schedule the target activity. We
also present Tucupi, a prototype of such constraint based WFMS.

1 Introduction

Workflow management systems (or WFMS) are systems that allow for the spec-
ification, execution, and monitoring of business processes. In execution, an in-
stance of a process, or a case goes through a series of activities performed either
automatically or by people, according to a pre-specified process definition. In
usual business domains, the process definition is created well in advance of its
use, and although most process definition formalisms allow for process that have
some flexibility, this flexibility is defined in advance as conditional execution of
different (pre-defined) paths based on some of the case data.

In particular, we are interested in the domain of health care. In this domain,
as well as others, there is the need for what we will define as partial workflows,
that is, workflows that are only partially defined and are conditional. When a
patient is admitted to an hospital, one does not have information to define,
at that time, all the activities will be performed to/one behalf of the patient.
Clearly, after the patient is discharged, one can look back and see the patient’s
stay as the execution of a workflow: activities ordered in time where performed
to/on behalf of the patient, but at no moment there was a workflow specification
that of which the patient’s case was an instance.

So patient care, as many other activities, such as software design, are a kind
of plan as one goes along workflow. The execution of the case, or better
the particularities of the case as it unfolds, defines which activities should be
performed next, or in the future. But whoever is in control of the workflow case,
does not have total freedom to decide which activity must be performed next.
There are rules or constraints that must be followed that imposes the execution



of unrequested activities, that forbids some activities for being executed or at
least being executed now, and delays the execution of activities, and so on.

Moreover, in domains with less defined processes, usually there is a person, or
people, which we will call the controller who decides which activities must be
performed to the case, which we call the target activity. In the hospital example,
a physician (the controller) decides that a surgical intervention is needed (the
target activity).

In the workflow as a helper scenario, the workflow will help the controller de-
cide on the implications of the target activity. The implications certainly involves
the need to execute activities both before and after the target activity (which
we call forced activities). In some domains, temporal constraints regarding the
forced activities may place further constraints in the execution of the target ac-
tivity. For example, an organization may define a rule that meetings must be
proceeded by the distribution of the meeting preparatory material at least two
days before the meeting itself. Thus the workflow as a helper can inform the con-
troller that to call a meeting with the development team, he must generate the
preparatory material, and if he does that immediately the sooner the meeting
can happen is in two days.

However, standard workflow systems are inadequate to model and enact such
work activities situations. Workflow systems, as used in the business environ-
ment, only allow for well defined processes. The workflow definition for such
processes is total and complete: the workflow defines all the activities that will
be executed in a case and in which order. Once activity A has finished the system
can compute exactly which activities must start now. In such defined processes,
the workflow system works as a dispatcher – at the end of an activity it com-
putes which activities become enabled and dispatch the case to the executors of
such activities. The control of what will be executed is in the WFMS, and some
control of when the activity will start (once enabled) is left to the executors
themselves (if the WFMS uses the concept of inboxes).

This paper is organized as follows: in section 2 we present the representation
of the constraints in the workflow definition; in section 3 we present the Tucupi,
a prototype of a workflow system that it uses workflows based on constraints;
in section 4 a discusion about temporal reasoning is presented; in section 5 we
present some related works and in the section 6 some conclusions and suggestions
of extension that can be implemented.

2 Constraint representation

This section will present the form as the restrictions that the definition of a
process composes must be represented. For in such a way, we will use a restricted
language. The language define both the preconditions and post conditions of a
target activity. The simplified version of a constraint is illustrated in the following
example:

We call such rules above as order constraints. The order constraint c1 spec-
ify that to perform the target activity A, activity B must have ended (precondition:



rule: c1

target: A

precondition: B

precondition: C

postcondition: D

B), activity C must also have ended, and activity D must happen after A is ended
( postcondition: D). The full complexity of the constraint language is reached
by adding the following constraints constructs:

– the precondition can be a disjunction of activities

target: A
precondition: B or C

state that in order for A to be enabled, either B must have happened or C
must have happened;

– also in precondition there can be a constraint that an activity should not
have happen before the target activity

target: A
precondition: not b

state that in order for A to be enabled, B must not have happen before;
– the construct parcondition (after parallel condition) states that an activity

must happen either before or after the execution of the target activity

target: A
parcondition: B

state that if A is executed then B must be also executed.

The constraints also can be used to represent a traditional (or total) workflow
defined with the structures: AND-Split, XOR-Split, AND-Join, XOR-Join and
sequencing. Space constraints do not allow us to elaborate this further.

3 Implementation - The Tucupi Server

The core of the system is the Tucupi server, which at execution time answers
queries, and accept commands and updates from the controller. In fact, the
server receives queries and commands from a known source but does not verify
that the source is a or one of the authorized controllers. It assumes that some
other software component will perform the authentication.

The server answers to the following queries:



who(A,C,W) This query returns the users that can perform activity A for the
case C of the process W. This is a pure WRBAC query;

enabled(C,W) This query returns the list of enabled activities for case C of
process W. An activity is enabled if its preconditions were satisfied;

not-ready(C,W) This query returns the list of activities that are not yet en-
abled for the case C of process W. This includes forced and target activities
which do not have all their preconditions satisfied;

what-if(A,C,W) This query returns a chain of precondition activities of all
forced activities that have to be executed in order to perform the target
activity A. For example, if an activity A1 has activity B1 as a precondition
activity, and B1 has activity C1 as a precondition activity, then the query
will return activities B1 and C1.

The server also accept the following updates and commands:

started(U,A,C,W) This command informs the server that activity A for case
C of process W started now and that U is the executor of that activity ;

ended(A,C,W) This command informs that activity A for case C of process
W ended at this time;

add(A,C,W) This command informs the server to add the target activity in
the future of the case C for process W. The corresponding forced activities
are either placed in the enabled list (if they have no precondition themselves)
or in the not-ready list.

3.1 Architecture

The architecture of server is composed of three components as depicted if figure
1:

WRBAC Component . The component that implements the WRBAC model
[7]. WRBAC is an extension of the Role-Based Access Control (RBAC [8,
1]) mechanism to workflows. WRBAC adds to the RBAC concepts that of a
workflow case, and associates to each activity in a workflow a corresponding
privilege to execute that activity. Using the concept of a workflow case it is
possible to model dynamic rights and non-rights in extension to the RBAC
static modeling of rights. Thus, WRBAC Component is used as a mechanism
of access control.

Workflow Definition Component . The component used by the user to de-
fine the process using the rules presented above.

Workflow Engine Component . It is the main component. It is used to pro-
cess the queries made by users. Moreover, it is used as a mechanism of
execution, for example, when the user starts (or ends) a workflow or activ-
ity.

The server was implemented in Prolog, and the current version achieve per-
sistence of the dynamic information by saving the state to a file after each new
update. This, of course, places some limits on the frequency of updates the sys-
tem can handle, but such limit was not reached in the tests performed (a few
updates per minute).
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Fig. 1. The Tucupi Architecture

3.2 Rule derivation

The representation of workflow as a set of restrictions has limitations. The def-
inition of workflow needs to include declarations that indicate when and which
activity must be executed during the execution of a case. However, constraints
are declarations that indicate what is not allowed to be made, what [9] called
negative rules. The positive rules are rules that indicate what it must be done,
therefore the opposite of the negative rules.

Rule derivation is a transformation of the rule as presented above into two
new rules: a consistency rule and an activation rule. The consistency rule main-
tain the original semantics of the constraint, whereas the activation is a positive
rule.

The figure 2 illustrates an example of rule derivation. The derived rules had
been written in Prolog. The predicates ended and started are update com-
mands presented above.

A single rule may generate more than two (Prolog) constraints, depending
on the granularity needed for the internal representation of the constraints. This
is irrelevant for the current work, but as we discuss in the last section, for future
work we expect to add the “constraint overriding” feature of WRBAC [7] into
this system, and in that case, exactly how much of the rule is embedded into
the constraints is important, since it is these internal constraints that will be
overridden.

In the example presented in figure 2, we have a constraint C01 generated from
rule with the same name, C01. The derivation states that C01 will be a violation
if b try to start and a has not ended yet. The activation rules are generated
for each postcondition and for each target activity. These rules dispatch the



Activation rules

rule: c01
    target: B
    precondition: A
    postcondition: CConstraint rules

next(b) :−
   not(started(b)),
   ended(b).

next(c) :−
   not(started(c)),
   ended(b).

constraint(c01) :−
   not(started(b) −>
          ended(a);
          true).

Fig. 2. A rule derivation example

activation of activity indicated in next function argument. In example presented
in figure 2, we have a next(b) function generated from target activity B and a
next(c) function generated from postcondition C. The next(b) function states
that b will be the next activity if b has not started yet and the activity a has
ended. The next(c) function states that c will be the next activity if c has not
started yet and the activity b has ended.

4 Temporal Reasoning

Finally, both the representation language and the Tucupi implementation include
some components of temporal reasoning. These features are still in a tentative
stage.

The representation language allow the modeler to specify that the target
activity A must be preceded by the end of B in less than say 10 hours. And
that after the end of A, C must be started in no less that 20 hours but no more
than 3 days. The implemented system already deals in a limited fashion with
temporal limits on activities, but although the system does not perform full
temporal constraint satisfaction reasoning, it is yet unclear to us how to fully
characterize the temporal reasoning that is indeed performed. For example, the
constraint language allow one to define temporal limits for preconditions, such
as

rule: r5
target: C
precondition: B [10]

which state that B must have ended within 10 hours of the start of C. Such
information is displayed to the controller, as the answer to the what-if(C,c45,w2)
query. Also when computing the forced activities of the target C now, if B has
ended in more than 10 hours ago, the system will determine that B must be



executed again. Since B must be restarted, some of its precondition, in particular
the ones with temporal limits, may no longer support the new execution of B,
and they will have to restart also. The system will also compute them as forced
activities for the target C.

But for example, when C really start, the system does not perform any check
if B’s precondition is still valid. The reason is that the server does not start the
activity, it is only informed when the activity stared!

In standard workflows and in our constraint based workflow without the
temporal information, once an activity becomes enabled, it remains enabled.
The new situation, with temporal limits, seems to require the Tucupi server to
give up the client-server approach and require that the starting of an activity
must necessarily “go through” the system. In this case, the system can control
at the time when the controller wants to start the activity if it is still enabled
or not. Such change in the system is simple but it moves the system from a
“workflow as just a helper” to some combination of helper and dispatcher. It is
not yet clear to the developers the consequences of such decision.

Finally, also as a limitation of the currently implemented temporal reasoning
component, computing forced activities is only performed if the web of precon-
ditions (or postconditions) is a tree, that is, C may have temporal preconditions
on B, and B may have temporal preconditions on A, but for example A cannot
have a postcondition on some activity that is also a postcondition of B or C.

5 Related work

To the authors knowledge there are very few works on constraint or even logic
based workflow representation formalisms. The closest work to this research is
the one reported in [5, 4], in which a flexible workflow is defines as a set of
workflow segments (in a graphic notation). A full workflow is constructed by
“gluing” these workflow segments. A strong limitation of these works refers to
the absence of an activation mechanism and the definition of post conditions.

The work reported in [9] also has similarities with this one. There, a temporal
logic is used to represent the temporal ordering among activities in a workflow
and some of the flavor of using a logic language that do not over-specify the
constraint. In that work, a non-monotonic logic is used to infer which activities
are enabled and thus can start immediately. In our work we use a simpler rule
that all activities that have all preconditions fulfilled are enabled (modulo the
time limits), and thus can start.

Paul Dourish et al. [2] describes Freeflow, a prototype workflow system that
uses constraints as a workflow model. Similarly to Tucupi, in Freeflow the user
has total control over actions in system, but does not have a controlled way
of override a constraint. In Freeflow, the system only alerts the user about the
existence of constraint and all the user has to do is accept or not execute the
action in presence of a constraint.

Workflow with time limits between activities are also not common in the
literature ([3, 6] are some of the examples). It possible that in business appli-



cations such temporal limits are less common, and thus such requirement has
not been contemplated by the workflow literature. By expanding the areas of
possible application of workflow technologies (for example into health care) it
becomes clear that such requirements are useful.

6 Conclusion and future work

The major extension of the framework described above is to include controlled
overriding of constraints. In an exceptional case, it may be necessary to violate
the rules expressed in the constraints. For example, if an emergency operation
is needed, some of the preconditions of this target activity may be overridden,
by a controller whit the proper authorization. WRBAC [7] already includes the
concept of overriding (executor) constraints for dealing with exceptional cases,
and clearly such idea can be extended into the process definition itself.

Finally, the temporal reasoning component will probably include a full tem-
poral constraint solver algorithm, in order to deal with non-tree graphs of pre-
condition and postconditions. And very likely the server will become more of
a dispatcher system in which activities are started by the system and thus the
preconditions checks are performed when the activity is about to start.
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