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Abstract: In the last years, some large companies have been involved in scandals related to 
financial mismanagement, which represented a large financial damage to their stockholders. To 
recover market confidence, certifications for best practices of governance were developed, and  
in some cases, harder laws were implemented. Companies adhered to these changes as a response 
to the market, deploying process aware systems (PAS) and adopting the best practices of 
governance. However, companies demand a rapid response to strategic changes or changes in 
business models between partners, which may impose serious drawbacks to the adoption of 
normative PAS to the competitiveness of these companies. Thus, while companies need flexible 
PAS, flexibility may compromise security. To re-balance the trade-off between security and 
flexibility, we present in this work an anomaly detection algorithm for PAS. The identification of 
anomalous events can help the adoption of flexible PAS without the loss of security properties. 
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1 Introduction 

The Sarbanes-Oxley Act, also known as SOx or Sarbox, is a 
USA Federal Law enacted in response to a number of major 
corporate and accounting scandals (e.g., Enron and 
WorldCom). These scandals, which cost investors billions 
of dollars when the share prices of the affected companies 
collapsed, shook public confidence in the nation’s securities 
markets. The SOx contains 11 titles that describe specific 
mandates and requirements for financial reporting, which 
imposes to major companies a redefinition of their 
operational processes in order to comply with new law. This 
scenario motivated the companies to adhere a set of best 
practices of governance – e.g., COSO, Committee of  
 

Sponsoring Organizations of the Treadway Commission, 
and COBIT, control objectives for information and related 
technology. Moreover, there are countries that the 
adherence of best practices of governance may indicate a 
competitive factor. For example, in Brazil the adherence of 
companies to the different levels of compliance to corporate 
governance is not a constraint law, but it is a competitive 
differential in the stock market. Thus, the companies 
became an interesting environment to adopt process aware 
information systems – workflow management systems 
(WfMS), enterprise resource planning (ERP), supply chain 
management (SCM), etc. – to control their business 
processes, so they would be able to present reliable financial 
reports in a short time. 
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Despite the automation provided by process aware 
systems, the business process control of competitive 
companies can not be supported by a normative tool like 
aWfMS, because such companies demand a flexible 
automation of their business processes. This flexibility is 
necessary because the companies need to respond rapidly to 
new market strategies or new business models, and process 
aware systems with too much operational constraint may not 
provide the appropriate environment to deploy such 
business changes. On the other hand, a flexible process 
aware system is vulnerable to fraudulent or undesirable 
executions, which clearly imposes a trade-off between 
flexibility and security. In other words, the system should 
provide flexibility for competitiveness reasons, but it also 
should avoid or identify misuse of system. 

Thus, in order to fit flexibility and security in the same 
system, it is important to develop methods that can detect 
anomalous instances of enacted business processes, that is, 
methods that can identify fraud attempts. We believe that 
the coexistence of security and flexibility requirements may 
be provided into a PAS through the aggregation of a tool 
that can dynamically detect fraud executions in the log of 
these systems. 

By and large, a log generated by such systems is 
comprised of process instances, referred in this work as 
traces, which are a stream view of process instances. For 
example, a trace abc means that the task a was concluded 
before task b, and task b was concluded before task c. A 
common intuition is to consider a fraudulent trace an 
infrequent or rare event in the log. Nevertheless, this paper 
argues that although an anomalous trace is an infrequent 
event, an infrequent trace not necessarily indicates an 
anomaly, as will be shown later. This premise imposes a 
challenge: What infrequent trace could be classified as 
anomalous? This work will present an algorithm that 
collaborates in this mission, and it will assess the 
effectiveness of the proposed anomaly detection solution. 

In order to define an anomaly detection tool, we are 
interested in applying process mining techniques to discover 
anomalies or outliers in the log. Although process mining 
algorithms were created to be used to discover or mine 
process models from logs of PAS (Agrawal et al., 1998; 
Maruster et al., 2001; de Medeiros et al., 2003;  
van der Aalst et al., 2004), there are some academic results 
that provide applicability in anomaly detection field, as in 
van der Aalst and de Medeiros (2005), and Bezerra  
and Wainer (2007a, 2007b; 2008a, 2007b). Nevertheless, 
considering the anomaly detection efficacy of these 
algorithms, it is interesting to implement extension 
approaches that consider other process mining algorithms or 
‘noise’ metrics. 

In those works, the classification of an anomalous trace 
is based on the ‘noise’ which a trace makes in a process 
model, which was discovered by a process mining 
algorithm. These algorithms are based on the rationale that 
if a trace is not an instance of a process model, then the 
model will require some structural changes to fit the trace; 

moreover, in the case of an anomalous trace, the structural 
changes will be probably higher. 

This work is closely related to the work presented in 
Bezerra and Wainer (2007a), but it differs because it defines 
a new ‘noisy’ metric, uses a new threshold value in the 
algorithm, and also evaluates the metrics with a different 
and bigger set of logs. Thus, in order to assess these 
differences this work is organised as follows. Section 2 
reports related work in process mining and anomaly 
detection field. In Section 3, we describe the anomaly 
detection algorithm and some extension points of that 
algorithm, while in Section 4 we present the evaluation of 
the algorithm. Finally, in Section 5 we conclude our work, 
and we point out some ideas for future work. 

2 Related work 

The large adoption of PAS by companies, both to better 
control their business processes and desire to improve the 
confidence of public, developed an interesting scenario to 
apply business intelligence techniques over the log 
generated by these systems. For example, process mining 
techniques allow for various types of analysis based on  
so-called event logs. Using process mining one can 
reconstruct a process model from a log generated by some 
information system. In the last ten years, researchers  
around the world have been working on such techniques 
(van der Aalst et al., 2003, 2004; de Medeiros et al., 2003). 
The term was first coined in the context of software 
processes. Cook and Wolf (1998) present process discovery 
as a tool to support the design of software processes because 
it is a hard, expensive, and a error prone activity, specially 
for big and complex processes. Also, a forerunner work in 
process mining, the paper of Agrawal et al. (1998), present 
an algorithm that mine models having three properties in 
mind: completeness, minimality, and irredundancy. 

Moreover, new process mining approaches have been 
proposed recently (van der Aalst et al., 2003, 2004;  
van der Aalst and Weijters, 2004; Schimm, 2004; Hammori 
et al., 2006; de Medeiros et al., 2006). Hammori et al. 
(2006) present an interactive approach to mine process 
models because it considers the setting of some parameters 
by an analyst. Among the recent process mining approaches, 
the most visible one is the α–algorithm (van der Aalst et al., 
2003, 2004; van der Aalst and Weijters, 2004). The 
effectiveness of that algorithm was formally proved for a 
class of process models, the workflow net (WF-Nets), which 
are Petri nets that require: 

1 a single start place 

2 a single end place 

3 every node must be on some path from start to end. 

However, such algorithms have severe limitations, e.g., the 
inability to deal with short loops. Schimm (2004) presents a 
mining approach that also discovers a model after merging  
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or rewriting the traces of log with a set of formal rules 
(axioms) from a workflow algebra. Besides, different from 
more disseminated approaches, the output model presented 
by Schimm is a block-structured workflow model. Similar 
to Schim’s approach, Wainer et al. (2005), argue that the 
process mining problem is not well defined because many 
solutions with 100% of fitness can be inferred, and present a 
sketch of a process mining algorithm that characterises the 
stated problem. That algorithm is an incremental mining 
approach, where a model is created trace by trace until all 
traces from the log are used. For that reason, the authors 
suggest a reformulation of problem that considers the 
selection of best model for a given log. 

In this work, because the classification process of a  
trace is based on the assessment of a model dynamically 
discovered, we apply process mining techniques to support 
the construction of such models dynamically discovered.  
In Bezerra and Wainer (2008a, 2008b), we highlight in 
conclusion that the accuracy of anomaly detection is related 
to the efficacy of process mining result. 

The problem of dealing with noise in the event log is 
closely related to anomaly detection field, and there are 
some process mining methods that deal with the mining of 
noisy logs (Agrawal et al., 1998; van der Aalst et al., 2003; 
Cook et al., 2004; Pinter and Golani, 2004; Herbst and 
Karagiannis, 2004), yet their approaches are limited to  
the frequency evaluation of dependency relation between  
two activities. For example, infrequent dependency  
relations between two activities may not be modelled in  
the resulting process model. A more sophisticated and 
promising approach, called genetic mining, was proposed in 
de Medeiros et al. (2006), and de Medeiros (2006). This 
algorithm is based on genetic algorithms, which search for a 
solution (an individual) that satisfies a selection criteria, 
called fitness function. The individuals are generated based 
on genetic operators such as crossover, mutation, and 
elitism. 

In addition to process mining area, this work is related 
to data mining field, which is also interested in anomaly 
detection area. Such an area has been applied in different 
application fields, and it has received a special attention of 
data mining community. For instance, in Donoho (2004) the 
author presents how data mining techniques can be used to 
early detect inside information in option trading. In Fawcett 
and Provost (1997), the authors present a system which is 
used to detect fraudulent usage of a cellular phone (cellular 
cloning). Moreover, disease outbreak detection has been 
proposed by detecting anomalies in the event logs of 
emergency visits (Agarwal, 2005), or the retail data for 
pharmacies (Sabhnani et al., 2005). There are solutions 
concerned with the intrusion detection in networks (e.g., 
Lee and Xiang, 2001; Noble and Cook, 2003). Other efforts 
are concerned with the detection of fraudsters in auctions or 
e-commerce sites (e.g., Pandit et al., 2007). 

As stated before, there are many solutions related to 
anomaly detection field, but in the context of PAS there are 
few solutions. The work of van der Aalst and de Medeiros 
(2005) is closely related to our work. In that work, the 

authors present two anomaly detection methods that are 
supported by α-algorithm. However, that algorithm has a 
serious limitation because it demands the existence of a 
known ‘normal’ log, which is used to mine a process model 
that will classify the traces of an audit log. That is, in 
application domains that demand a flexible support the 
existence of a known ‘normal’ log may not be available. In 
Yang and Hwang (2006), the authors present a framework 
to detect fraud and abuse in health insurance systems. In this 
work, clinical pathways are used to construct a detection 
model, whose features are based on frequent control-flow 
patterns inferred from two datasets, one with fraudulent 
instances and other with normal instances. 

Also related to the context of PAS, Bezerra and Wainer 
(2007a, 2007b; 2008a, 2008b) present some anomaly 
detection approaches. In those papers, the authors cite three 
extension points that may influence the accuracy of the 
anomaly detection algorithm: process mining algorithm, 
noise metric, and size of sampling. Because this work also 
uses the conformance variance to classify a trace as an 
anomalous instance, it is closely related to the work in 
Bezerra and Wainer (2007a), but we can point out two 
major differences: 

1 this work uses a new noise metric that evaluates the 
complexity of a model, which is used to classify a trace 
as anomalous or normal 

2 this work redoes the assessment of algorithms with a 
different set of logs, supporting the results of previous 
work. 

Therefore, considering the conformance assessment of a 
model regarding a log, this work is closely related to the 
work in Rozinat and van der Aalst (2005, 2008), which 
present different dimensions for the evaluation of process 
models. Beyond fitness dimension, which describes how 
much of log can be correctly played in a model; the authors 
also present the precision and structure dimensions. 
Precision dimension indicates how much behaviour is 
supported by a model, whereas structure dimension 
indicates how much complex is a model. In Rozinat et al. 
(2007), the authors present a more complete analysis of 
different assessment metrics, comparing different evaluation 
aspects of each metric (e.g., input, output range, dimension 
of assessment, and computational complexity) 

3 Anomaly detection algorithms 

The concept of anomaly in a log can be related to different 
semantics. For instance, an anomaly can be a noise when an 
event (task) is not registered into the log, or it is registered 
in duplicity, consequence of a log component error. In 
addition, an anomaly can represent an exception, an 
operational error, or a fraud attempt. An exception 
characterises an abnormal or unusual execution, but it can 
be supported by the business. For example, in a healthcare 
system there are a lot of patient paths that deviate from 
standard guidelines. As another example, a fraud attempt 
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and an operational error are unusual executions that provoke 
undesirable results to the business. 

Independently of semantic, it is common to consider an 
anomaly as a rare or infrequent event. However, it is a naive 
approach to classify a trace considering only its frequency 
in the log. For example, is it appropriate to classify as 
anomalous the trace whose frequency is inferior to 4%? 
Some paths in the process model can be enacted more 
frequently than others, so probably some ‘normal’ traces are 
infrequent. For that reason, we do not believe in an anomaly 
detection method based only on the frequency of traces. 
Figure 1 illustrates this problem. It depicts a process model 
and four logs – a log with all possible traces of the model 
(Log 1) and three logs (Log 2, Log 3, and Log 4) that 
represent subsets of all possible traces. As it is possible to 
notice, each trace of four logs can be played by the depicted 
model. 

Figure 1 Mining with a subset of possible traces 

 
Notes: Examples of incomplete logs. The semantic 

blocks induced by mining are bellow of each 
incomplete log. 

In this example, all incomplete logs can generate, by 
process mining, the same model. For example, in Log 2, 
after mining the traces [a – b – c] and [a – b – d], a model  
[a – b – or (c, d)] can be inferred, representing a selection 
between activities c and d (OR(c, d)). Then, adding the trace 
[b – a – d] to the model [a – b – or(c, d)], a new model 
[and(a, b) – or(c, d)] can be inferred, representing the 
parallelism between activities a and b. In this example, the 
Log 2 has not the trace [b – a – c], but it can be created by 
the mined model [and(a, b) – or(c, d)] because there is a 
path in model that fits with the trace [b – a – c]. Therefore, 
even if the trace [b – a – c] was infrequent in the log, it 
would not be classified as anomalous. 

3.1 Algorithm: preliminary definition 

As stated before, an infrequent trace can be an anomaly or a 
normality. However, we can assume that a frequent trace 
represents a normal execution, otherwise its repetitions 
would be easily noticed by a business process controller, or 
it would not be allowed. Because there is not a clear 
definition of what it is an anomalous trace, in this work, we 
adopt the following rationale to help us detect anomalous 
traces: 

“Given a process model mined with almost all 
traces from a log, the compliance level 
between this model and the whole log is 
inferior when the whole log comprises an 
anomalous trace.” 

Therefore, the proposed method will classify as anomalous 
traces the traces whose compliance level variance is greater 
than a given threshold value. This definition is preliminarily 
presented in Algorithm 1. 

Algorithm 1 Preliminary definition of anomaly detection 
algorithm 

Input: A log L, which is a set of traces generated by a PAS. 
Output: A set of traces A that was classified as anomalous 
traces. 
AnomalousTraces(L) 
(1) Tf is a set of frequent traces from log L; 
(2) T = {different traces of L} – Tf; 
(3) for each race t ∈ T, evaluate the compliance variance 
(4)  { };L L t′ = −  

(5)  Evaluate the conformance value c1 for the log 
without the trace t; 

(6)  Evaluate the conformance value c2 for the log L; 
(7)  Evaluate the conformance variance c = | c1 – c2 |; 
(8)  Add the tuple (t, c) in the set C = {(t, c) ∈ T × ℜ}; 
(9) A is the set of anomalous traces (initially empty); 
(10) for each (t, c) ∈ C 
(11)  if c ≥ threshold 
(12)   Add t in the set A; 
(13) return A 

In the first step of the algorithm, a set of frequent traces are 
identified and separated. In order to classify a trace as 
frequent or infrequent, we adopt a heuristic value of 10%, so 
we say that a trace is frequent if its frequency is at least 
10%. Although this is a heuristic value, we believe that 10% 
seems to be reasonable to represent those process paths that 
are more excited in real scenarios. Moreover, it is important 
to cite that such a step is used for optimisation reasons, 
since it complies with our premise that frequent traces 
would not be anomalies. Thus, the second step is used to 
compose a set of candidate anomalous traces, that is, the 
infrequent traces. 

This preliminary definition of Algorithm 1 is not 
complete, since we need to define the value of threshold 
variable. Therefore, in order for this algorithm to work, we 
need to discover how much is the compliance variance level 
when the log comprises only ‘normal’ traces, that is, traces 
which could be an instance of a known model. Then, the 
analysis of compliance variance values in ‘normal’ 
scenarios would help us infer a threshold variance of 
conformance metric for ‘normal’ traces. After this 
investigation, we can consider that anomalous traces are 
traces that have a compliance variance greater than the 
variance in ‘normal’ scenarios. 
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In Section 3.2, we will discuss the conformance metrics 
that will be used in the complete definition of algorithms, 
and we will describe the analysis carried out to define the 
corresponding threshold values. 

3.2 Study of some metrics 

This study was carried out for each different trace of a log, 
and it will try to define a threshold value that best describes 
the conformance variance that a trace may provoke, in 
scenarios of logs without occurrences of anomalous traces. 
The definition of this threshold value works as a delimiter 
(or classifier) of ‘normal’ and ‘anomalous’ traces. In other 
words, as stated in the preliminary definition in Section 3.1, 
we assume that anomalous traces are traces that will give us 
a compliance or conformance variance value greater than a 
threshold value. 

To quantify the compliance of a log and a model, we 
used the conformance metrics presented in Rozinat and  
van der Aalst (2005). These metrics are based on two 
dimensions: fitness and appropriateness. The fitness 
dimension is measured by a metric with the same name. 
While the appropriateness dimension is measured by two 
metrics, structural and behavioural appropriateness. These 
metrics are real numbers between zero and one, where the 
value zero means that there is not a fitness or an 
appropriateness between the model and the log, whereas, the 
value one means that there is a total compliance between the 
model and the log. For instance, the fitness metric reports a 
value which indicates how compliant is a model and a log. 
If the model is 100% compliant its fitness is 1 and it 
indicates that all traces can be played over the model. On 
the other hand, if the model is totally incompliant its fitness 
is 0. The structural and behavioural appropriateness metrics 
report the preference between two fitted models. The 
structural appropriateness penalises bigger or much specific 
models, while the behavioural appropriateness penalises 
much generic models. Therefore, the structural metric is 
applied to a model, whereas the behavioural metric, similar 
to fitness metric, is applied to a pair of model and log. 

Besides, we defined a new metric called size metric that 
is similar to structural metric because it also considers the 
complexity of the process model. It is a metric that 
represents the counting of places, transitions and edges in a 
Petri net. Moreover, it is not a conformance metric because 
it does not evaluate the correspondence between a log and a 
model, but it assesses only the complexity (number of 
elements) of process model. This metric was defined and 
used in this study because we believe that a log with 
anomalous traces induces a process model that is more 
complex than a model induced by the same log without 
anomalous traces. That is, we believe that a model mined 
with normal and anomalous traces will have more paths 
than a model mined without anomalous traces. 

The study of these metrics was carried out with 149 logs 
without anomalous traces. We consider that a log does not 
have anomalous traces because it is filled by traces created 
from a known process model. Thus, the creation of a log is 

based on a model randomly created by a function that 
utilises four parameters, as follows: 

1 the maximum length of a trace 

2 the minimum number of different traces that a model 
can instance 

3 the maximum number of different traces that a model 
can instance 

4 the number of output models. 

A log is created through playing all paths of a model. Then, 
the traces created after playing the model are used to fulfil 
the log, but with a non-uniform frequency – some paths are 
more excited than others. Figure 1 can be used again like an 
example because it illustrates a process model and its four 
respective traces. In the context of this study, each log 
contains between 4 and 15 different classes of traces, whose 
length is between 4 and 7. In addition, each log was fulfilled 
with 100 traces. Thus, for each log L from these 149 logs, 
we collect the conformance variance for each class of trace  
t ∈ L as follows: 

1 a model Mr was created with the remaining traces  
(L – t) 

2 a tuple C1(F1, S1, B1) was created where: 
• F1 is the fitness of Mr and L – t 
• S1 is the structural appropriateness of Mr 
• B1 is the behavioural appropriateness of Mr and  

L – t 
• X1 is the size of Mr 

3 a model Ma was created with all traces (L) 

4 a tuple C2(F2, S2, B2) was created where: 
• F2 is the fitness of Mr and L 
• S2 is the structural appropriateness of Ma (model 

created from all traces) 
• B2 is the behavioural appropriateness of Mr and L 
• X2 is the size of Ma (model created from all traces) 

5 a variance tuple Cv(Fv, Sv, Bv, Xv) was created and saved 
where: 
• Fv = |F1 – F2| 
• Sv = |S1 − S2| 
• Bv = |B1 – B2| 
• Xv = |X1 – X2| / X1. 

The models Mr and Ma were created through the  
α-algorithm, a process mining algorithm which generates a 
Petri net representation of a process model van der Aalst  
et al. (2004). Each tuple saved in step 5 represents a record 
of a table of conformance variance values (in statistical 
meaning, individuals), whose values were assessed, as it is 
possible to see in Figure 2. This figure comprises three 
histograms and a corresponding statistical report for each 
metric, where y-axis reports the frequency, and x-axis 
reports the conformance variance value. In the case of size 
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metric, the variance was normalised by the first size value, 
which avoids a misinterpretation for a same size variance, 
but two different original models with different sizes. 
Moreover, the figure does not report structural variance 
analysis because all collected variance values for this metric 
was zero. 

Figure 2 Histogram and statistical analysis for study of metrics, 
(a) histogram of fitness variance (b) histogram of 
behavioural variance (c) histogram of size variance 

 
(a) 

 
(b) 

 
(c) 

It is worth notice that those graphics report our intuition  
that for ‘normal’ traces the majority of values represent 
minimum variation in the conformance metric. For instance, 
1,105 individuals have a fitness variance between 0.00 and 
0.02, 1198 individuals have a behavioural variance between 
0.00 and 0.1, and 1208 individuals have a normalised size 
variance between 0.00 and 0.2. 

3.3 Extension approaches from preliminary 
definition 

The preliminary definition of algorithm considers the 
evaluation of two conformance values, and its variance. 
Right now, we will present four different metrics that will 
complete the definition of algorithm. Each metric will 
represent an extension of algorithm. Moreover, all the 
extensions consider the same threshold value, which was 
induced by first quartile (1st Q. = 0.0) of prior study. For 
instance, the structural variance is zero for at least 75% of 
experiments (3rd quartile is zero for structural metric), and a 
trace with a structural variance greater than zero is a good 
candidate to be an anomalous one. 

In Algorithm 2, we present an extension based on size 
metric as a complete definition of algorithm. The same 
rationale would be applied for other extensions, but 
replacing size metric by other metrics (fitness, structural 
appropriateness, and behavioural appropriateness). 

Algorithm 2 Fraud detection algorithm based on size metric 

Input: A log L, which is a set of traces generated by a PAS. 
Output: A set of traces A that was classified as anomalous 
traces. 
AnomalousTraces(L) 
(1) Tf is a set of frequent traces from log L; 
(2) T = {different traces of L} – Tf; 
(3) for each race t ∈ T, evaluate the compliance variance 
(4)  { };L L t′ = −  

(5)  Evaluate the size value c1 for the log without the 
trace t; 

(6)  Evaluate the size value c2 for the log L; 
(7)  Evaluate the (normalised) size variance  

c = | c1 – c2 | / c1; 
(8)  Add the tuple (t, c) in the set C = {(t, c) ∈ T × ℜ}; 
(9) A is the set of anomalous traces (initially empty); 
(10) for each (t, c) ∈ C 
(11)  if c > 0 
(12)   Add t in the set A; 
(13) return A 

4 Assessment 

We have assessed the algorithms with a set of synthetic logs 
which have been created based on the traces of process 
models dynamically created. Two reasons influenced our 
choice for synthetic data. First, it is hard (perhaps inexact) 
to identify an anomalous trace in a real log, so it would 
impose some limitations on the assessment. For example, in 
Pandit et al. (2007), the authors report some problems 
regarding the assessment of their anomaly detection system 
with real data. Last but not least, a real log is not easily 
available. Therefore, as we know the process model that 
was used to create a log (‘normal traces’), it is easy to 
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identify the anomalous traces in the log since an anomalous 
trace is a trace that is not an instance of a known model, that 
is, a trace that can not be played by model. 

4.1 Methodology 

The experiments were based on 435 logs with different 
configurations. Initially, we randomly created 145 process 
models which were the matrix of logs. Such models could 
instance at least eight unique traces and at most 15 unique 
traces. For each model, we instanced 80 traces that were 
used to compose the log and represent the normal traces to 
the experiment. In addition, the unique traces of each log 
were added in a non-uniform frequency distribution. After 
that, we merged some anomalous traces to define six types 
of log, as follows: 

1 a log A that has one single anomalous trace 

2 a log B that has two single anomalous traces 

3 a log C that has three single anomalous traces. 

With regard to the anomalous traces, they were generated  
as instances of a process model created after shifting  
AND-Blocks to OR-Blocks, and vice versa. Such a process 
model is known only during log generation, but it is 
unknown during anomaly detection assessment. The 
instances of this new (shifted) process model are used to 
define the anomalous traces for the original model. Then, 
after an instance has been created some events could be 
removed of the trace, or two random events could be 
interchanged. 

Figure 3 illustrates an example of definition of 
anomalous traces. The possible traces of upper model are 
anomalous for the lower model, and vice-versa. In this 
example, while the tasks c and d could not play together in 
the upper model, they are played together in the lower 
model. On the other hand, while the tasks a and b would 
have to play together in the upper model, they are not 
played together in the lower model. 

Figure 3 Example of definition of anomalous traces (see online 
version for colours) 

 

The approach used to create the anomalous traces represents 
our intuition that anomalous traces are similar to ‘normal’ 
traces, for they are based on the same set of tasks. In other 
words, we believe that in real scenarios a fraudster will not 
attempt to execute new tasks, but he will try to make ‘little 
changes’ in a standard operational procedure, because it will 
be more difficult that his fraud be detected. After the  

definition of logs, we carried out the experiments with the 
algorithms described in Section 3. The following subsection 
describes the results. 

4.2 Results 

Table 1 reports a summary of results for three performance 
metrics, as follows: ACC indicates the accuracy of 
algorithm, that is, how many traces in the log were correctly 
classified; TPR, which is an acronym of true positive rate, 
indicates the ratio of anomalous (positive) traces that were 
correctly classified; and FPR, which is an acronym of false 
positive rate, indicates the ratio of normal (negative) traces 
that were incorrectly classified. These values were obtained 
for the algorithms presented in Section 3.3, which indicates 
the use of a threshold value equal to zero, defined based on 
the first quartile of our study with logs without anomalous 
traces (Section 3.2). 

Table 1 Summary of assessment 

 Fitness Size Structural Behavioural 

ACC 54.07% 54.07% 78.54% 78.61% 
TPR 99.89% 99.89% 0.00% 1.67% 
FPR 57.43% 57.43% 0.00% 0.36% 

Notes: Threshold based on 1st quartile. 

It can be noticed in Table 1 that structural and behavioural 
metrics are not appropriate to detect anomalous traces, 
while fitness and size metrics have had a TPR near to 100%. 
Also, despite similar semantic between size and structural 
metrics, which are metrics used to report the complexity of 
a model, they have had opposite performance. Such a 
differentiated behaviour may be related to an extended 
definition of size metric, which also considers the edges of 
Petri net. 

However, despite the good performance of fitness and 
size metrics for classifying anomalous traces, their 
mismatch rates were bad for classify ‘normal’ traces. That 
behaviour in the fitness and size approaches induced us to 
believe that the threshold value needs to be greater than 
zero, in order to accommodate a greater compliance 
variance for ‘normal’ traces. For that reason, we redefined 
the algorithms based on fitness and size metrics, presented 
in Section 3.3, through the use of the following threshold 
values: threshold = 0.006782 for fitness metric; and 
threshold = 0.01594 for size metric. Such values represent 
the compliance variance mean in the study presented in 
Section 3.2. 

Then, we carried out tests with the redefined algorithms, 
whose results are reported in Table 2. Figure 4 depicts a 
graphical analysis tool [ROC curve (Fawcett, 2004)] utilised 
to compare the performance of the anomaly detection 
algorithms (or classifiers) based on fitness and size metrics. 
ROC curve is an useful technique for organising classifiers 
and visualising their performance. Each point in the figure 
represents one algorithm, labelled as follows: F for fitness 
approach; and S for size approach. 
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Table 2 Summary of assessment 

 Fitness Size 

ACC 80.21% 90.92% 
TPR 74.71% 61.38% 
FPR 18.41% 5.37% 

Note: Threshold based on mean. 

Figure 4 ROC curve for fitness and size approaches (see online 
version for colours) 

 

In an ROC curve, the best classifier is that one closer to 
optimal point of coordinates (0, 100), which means 0% of 
misclassification of anomalous traces and 100% of correct 
classification of anomalous traces. That is, the x-axis 
represents the ratio of false positives (FP rate), and the  
y-axis represents the ratio of true positives (TP rate). The 
diagonal line in the centre of graph is used to identify good 
or bad classifiers. Points above the diagonal line indicate 
good systems, while points below the line indicate bad 
systems. The figures illustrate a convex curve that is tangent 
to the iso-performance classifiers, that is, classifiers that are 
possibly optimal. Moreover, there is an upper line that is 
tangent to the curve, where it touches the optimal classifier. 
The inclination of that line depends on the number of 
positives examples (anomalous traces) in the data, which for 
this assessment were about 25% of anomalous instances in 
each log. 

Among the algorithms, the fitness approach has had  
the best performance for detecting anomalous traces  
(TPR = 74.71%), but it also has had the worst performance 
for classifying ‘normal’ traces (FPR = 18.41%). Thus, for 
that reason, the size metric approach has had the best 
accuracy (ACC = 90.92%). Considering the execution time 
of algorithms, both fitness and size approaches have had 
similar performance. The average time of execution for 
algorithms was as follows: 3.42 s for fitness approach;  
 

3.58 s for size approach. In the worst case, the algorithms 
were executed in the following times: 8.7 s for fitness 
approach; 9.5 s for size approach. 

5 Conclusions and future work 

Nowadays there is a huge demand for auditing system, 
especially motivated by financial accounting frauds. 
Scandals related to accounting and financial 
mismanagement of companies can reduce the confidence of 
investors, but the adherence of companies to best practices 
of governance, like COSO and COBIT, can support 
companies against frauds, attracting new investors. Even 
considering that the adoption of best practice of governance 
by companies influences the market confidence, such 
companies demand a flexible environment of business 
control for strategic reasons, otherwise their business 
processes can not be easily extended to new business 
models (e.g., by merging of two companies). Thus, there is 
clearly a demand for a balance between rigid control and a 
flexible and competitive control. 

This paper showed a fraud detection algorithm for logs 
of PAS based on four different metrics: fitness, structural 
appropriateness, behavioural appropriateness, and size. We 
argued that such an algorithm is important in scenarios of 
application where a flexible and secure business process is 
essential. The anomaly detection algorithm was based on 
the α-algorithm, a process mining algorithm. 

We analysed the algorithms with 435 logs synthetically 
created. Also, an ROC curve was generated for fitness and 
size approaches, which have had the best performance 
among the four alternatives. Then, the anomaly detection 
algorithm based on the size metric has shown the best 
accuracy, for it has correctly classified nearly 91% of traces 
from the logs. Regarding performance analysis, both fitness 
and size approaches have had similar execution time. 

However, even considering the results of this work, 
some additional work has to be done. Among limitations, it 
is important to note that the accuracy of algorithms is 
strictly related to the following components: 

1 the process mining algorithm 

2 the metric used to evaluate the compliance variance 
between two logs (with and without anomalous traces) 

3 the threshold value used to define the compliance 
variance limit for logs without anomalous traces. 

Therefore, a future research agenda will consider the 
assessment of other process mining algorithms (e.g., 
extensions of α-algorithm), others metrics, and a deeper 
study of threshold values. 
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