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Abstract: Nitrogen fertilization is one of the main management strategies for continuous pasture
management with high productivity. We examined the effects of nitrogen fertilization on the mor-
phogenic, structural, and tillering dynamic characteristics of Tanzania grass in the Amazon region
in the state of Pará, Brazil. The study was conducted using a randomized block design with six
treatments (0, 100, 200, 300, 400, and 500 kg N ha−1 year−1) and five replicates. The treatments were
performed during the rainy season in 2016 and 2017 using urea as the nitrogen source. The leaf
elongation rate was increased by 68.5% compared with that of the control treatment (p < 0.01). The
leaf appearance rate and number of alive leaves increased with higher doses of nitrogen (p < 0.01,
each). The regrowth period was reduced by approximately 13 days under 500 kg N ha−1 (p < 0.01),
thus providing more production cycles. Nitrogen fertilization was also associated with a higher
tillering rate (p < 0.01); however, the rate of this increase decreased with increasing nitrogen dose.
Higher nitrogen doses thus improved the development of Tanzania grass; however, this became less
pronounced at doses < 300 kg N ha−1.

Keywords: nitrogen; Panicum maximum; pasture longevity; tiller; tropical grassland

1. Introduction

The Amazon is considered the largest agricultural frontier in the world [1], and
approximately 25% of cattle herds in Brazil are raised on pastures in this region [2]; however,
some production systems still rely on limited management of the soil–plant–animal system.
A prominent characteristic of such management is pasture degradation, resulting in reduced
productivity, lower stocking rates, and topsoil loss [3]. These processes are typically
followed by the conversion to different land use practices and the need for converting
previously undisturbed systems to pasture, resulting in greater pressure on the biome [4].

Intensifying ruminant production is one of the alternatives for increasing the compet-
itiveness of this production system compared to other activities, in addition to reducing
pressure regarding the deforestation of new areas [5]. Intensification and maintenance
of pasture areas can be achieved by improving soil fertility [6], thus enhancing forage
production [7,8], improving management, and increasing gains per area [9]. Nitrogen is the
main nutrient required for increased pasture productivity, especially in tropical grasses [7,8].
Increased productivity in response to nitrogen availability is due to the biosynthesis of
proteins and chlorophyll in plants [10]. Furthermore, nitrogen in the system can help
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oxidize methane in the soil, thus reducing gas emissions into the atmosphere and reducing
adverse effects on the environment [11,12].

The growth-stimulating effects of nitrogen fertilization of pastures are dose-dependent;
however, nitrogen use efficiency decreases with increasing nitrogen dose [8]. High nitro-
gen doses tend to dissipate through ammonia volatilization [13], suggesting that grass
growth may decrease with increasing nitrogen fertilization. A recent review paper spec-
ified the need to identify the correct dose per application to avoid nitrogen loss to the
atmosphere [14].

Several studies on tropical grasses fertilized with nitrogen in Brazil have shown that
the maximum dose applied did not produce the best results in the grasses Megathyrsus
maximus cv. Aruana (with up to 225 kg N ha−1) [15], Urochloa brizantha cv. Marandu (up to
450 kg N ha−1) [16], and Megathyrsus maximus × Megathyrsus infestum cv. Massai (up to
500 kg N ha−1) [8]. We thus hypothesized that the developmental rate of pasture grasses
fertilized with nitrogen should decrease at higher doses. The objective of this study was
to evaluate the effects of different doses of nitrogen on the grass Megathyrsus maximus
(syn. Panicum maximum) cv. Tanzania with regard to its morphogenic, structural, and
tillering characteristics.

2. Materials and Methods
2.1. Location and Planting

This study was conducted in the municipality of Igarapé-Açu, Pará, Brazil, located
at the geographic coordinates 01◦07′21′′ S, 47◦36′27′′ W, at an altitude of 50 m. Before
the experiment, the area was covered with grasses and shrubby vegetation native to the
Amazon. The topography of the area was flat and homogeneous. The municipality of
Igarapé-Açu experiences an average annual temperature of 26.8 ◦C and annual precipitation
of 3000 mm (Figure 1); the climate is classified as type Am, according to the Köppen
Classification [17], characterized as a rainy climate with a short dry period.
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Figure 1. Monthly total rainfall and average temperatures during the study period.

The soil in the experimental area was classified as oxysol with the following chemical
composition at a 0–20 cm depth: pH in H2O: 4.7; organic matter: 7.98 g kg−1; P (Mehlich-1):
1.5 g dm−3; K: 0.03 cmol c dm−3; Ca2+: 0.28 cmol c dm−3; Mg2+: 0.28 cmol c dm−3; and
Al3+: 1.11 cmol c dm−3. The soil was amended with dolomitic limestone (TNRP 95%) at a
dose equivalent to 2.9 tons ha−1 to increase the base saturation to 60% and allow cultivation
of Tanzania grass.
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After preparing the soil, Tanzania grass seeds were planted under phosphate fertil-
ization (simple superphosphate) at a dose equivalent to 80 kg of P2O5 ha−1, applied by
haul. Periodic cuts were performed to a residual height of 35 cm for adequate pasture
management. The experiments began in January 2016, and phosphate fertilizer was applied
again with potassium fertilizer at a dose equivalent to 60 kg K2O ha−1 (in the form of KCl).
The first application of nitrogen was applied in each treatment.

2.2. Treatments and Experimental Design

A randomized block design was used with six treatments corresponding to nitrogen
doses of 0 (control), 100, 200, 300, 400, and 500 kg N ha−1 year−1. Five replicates per
treatment were used, resulting in 30 experimental units. The plots were 12 m2 (3 m × 4 m),
separated by 1 m corridors. Measurements were conducted over two consecutive years
(2016 and 2017) during the rainy period (January–July).

Nitrogen and potassium were applied six times at intervals of 30 days. Fertilizer
application began in January and continued until June.

2.3. Management of Experimental Plots

The height of the Tanzania grass canopy was measured in centimeters using a ruler,
and the average canopy height was calculated using 10 points per plot. At a grass height of
70 cm, each plot was cut to a height of 35 cm; at 70 cm height, the canopy reached 95% light
interception [18,19] and a balance between productivity and quality occurs in Tanzanian
grass. On 8 January 2016, a leveling cut to a residual height of 35 cm was performed in all
plots, and the nitrogen treatments were applied.

2.4. Experimental Measurements

After the leveling cut, five tillers in the vegetative phase (as per the average conditions
of the plot) were marked in each plot. The tillers were identified using plastic ties, num-
bered, and measured using a graduated ruler. Tiller monitoring was performed twice per
week (on Wednesdays and Saturdays). New tillers were marked, and the plots were cut
according to the same initial criteria.

The leaves were numbered and classified as fully expanded (fully expanded and with
a visible ligule), expanding (no visible ligule), or senescent (when the leaf blade showed
signs of senescence). The leaves were considered dead when 50% of the leaf blade showed
signs of senescence. The stem length was measured from the ground to the ligules of the
last fully expanded leaf [20]. A graduated ruler was used for all measurements.

The following morphogenic and structural variables were examined: (i) leaf elongation
rate (LER; cm of leaf tiller−1 day−1); (ii) leaf appearance rate (LAR; leaves tiller−1 day−1);
(iii) phyllochron (PHY; days leaf−1 tiller−1); (iv) leaf senescence rate (LSR; cm of leaf tiller−1

day−1); (v) leaf life span (LLS; days); (vi) stem elongation rate (SER; cm of stem tiller−1

day−1); (vii) final leaf size (FLS; cm); (viii) number of living leaves (NLL; leaves tiller−1).
The tiller population density (TPD; tiller m−2) was evaluated by double-sampling the

total number of tillers (basal and aerial) existing in 0.5 m × 1.0 m frames, positioned at
points that represented the average condition of the plot. Counts were performed every
30 days.

A PVC ring measuring 25 cm in diameter was inserted inside a clump in each plot to
evaluate the tiller patterns. In the first assessment (generation zero; G0), all tillers inserted
inside the ring were marked with single-color wires to identify the generation. Dead tillers
were counted every 30 days, and the tillers that were produced in subsequent generations
(G1–G6) were marked using wires of different colors.

Based on these assessments, we calculated the following: (i) tiller appearance rate
(TAR; tiller 100 tiller−1 day−1) = (number of new tillers/total number of tillers from the
previous generation)/30; (ii) tiller mortality rate (TMR; tiller 100 tiller−1 day−1) = (number
of new tillers/total number of tillers from the previous generation)/30; and (iii) tiller
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survival rate (TSR; tiller 100 tiller−1 day−1) = 1 − TMR. The pasture stability index (P1/P0)
was calculated as described previously [21], using the equation P1/P0 = TSR × (1 + TAR).

2.5. Statistical Analyses

The data were analyzed using Shapiro–Wilk and Levene’s tests to confirm normality
of residuals and homogeneity of variances, respectively. An analysis of variance was
performed (p < 0.05), and orthogonal polynomial contrasts were used to determine the
nature of the responses according to the application of nitrogen. All statistical analyses
were performed using R statistical software (version 4.0.2; R Core Team, 2014).

3. Results

The morphogenic and structural variables LER, LAR, PHY, SER, and NLL showed
significant changes (p < 0.05, each) as the nitrogen dose increased (Table 1). The LSR, LLS,
and FLS variables were not significantly different.

Table 1. Morphogenic and structural characteristics of Tanzania grass at various doses of nitrogen
fertilization.

Variable
Nitrogen Doses (kg N ha−1)

SEM p-Value
Contrast

0 100 200 300 400 500 L Q

LER 2.505 2.706 3.416 3.207 3.680 4.220 0.627 <0.01 <0.01 0.771
LAR 0.066 0.073 0.079 0.077 0.086 0.083 0.015 0.031 0.049 0.751
PHY 15.495 14.782 13.484 12.304 11.169 10.372 1.844 <0.001 <0.001 0.990
LSR 0.419 0.462 0.401 0.463 0.469 0.497 0.105 0.818 0.228 0.711
LLS 41.023 44.091 43.665 40.047 36.628 37.040 7.886 0.618 0.133 0.443
SER 0.072 0.072 0.081 0.082 0.112 0.109 0.026 0.035 <0.001 0.532
FLS 21.381 23.787 22.590 21.874 22.884 22.640 1.761 0.533 0.673 0.547
NLL 2.825 3.599 3.433 3.389 3.475 3.873 0.253 <0.001 <0.001 0.397
RP 33.2 27.5 24.04 24.64 21.56 19.52 2.362 <0.001 <0.001 0.060
NC 6.2 7.4 8.8 8.6 9.4 10.6 0.809 <0.001 <0.001 0.477

LER: leaf elongation rate; cm leaf tiller−1 day−1; LAR: leaf appearance rate; leaf tiller−1 day−1; PHY: phyllochron;
days leaf−1 tiller−1; LSR: leaf senescence rate; cm leaf tiller−1 day−1; LLS: leaf life span; days; SER: stem elongation
rate; cm stem tiller−1 day−1; FLS: final leaf size; cm; NLL: number of living leaves; leaf tiller−1; RP: regrowth
period; days; NC: number of cycles; SEM: standard error of the mean; L: linear; Q: quadratic.

An increasing linear response was observed in LER (p < 0.01), with values of 2.505
and 4.220 cm leaf tiller −1 day−1 for doses of 0 and 500 kg ha−1, respectively. An increase
of 0.0084 cm in leaf tiller−1 day−1 was observed for each kilogram of nitrogen applied.
LAR showed a linear increase (p = 0.049). LAR increased linearly (p < 0.05) with increasing
nitrogen dose, at a difference of approximately 25% for the highest doses. PHY showed
an opposite trend to the other variables, with a decrease (p < 0.01) depending on the
nitrogen dose.

SER increased (p < 0.01) with increasing nitrogen dose, at a difference of approximately
155% for the highest doses. The NLL showed a linear effect (p < 0.05) with increasing
nitrogen doses.

The canopy regrowth period decreased (p < 0.01) as the nitrogen dose increased. With-
out fertilization, regrowth lasted approximately 33 days, which was approximately 14 days
shorter than that at the highest dose (500 kg ha−1). The number of cycles increased (p < 0.01)
according to the nitrogen dose, with up to 4.4 cycles more at the highest nitrogen dose.

As for the variables related to tillering (Table 2), TDP showed a quadratic behavior
(p < 0.05), with an accelerated rate of tillering up to a dose of 300 kg ha−1, which decreased
at 400 and 500 kg N ha−1. An increase of approximately 14% in tillering was observed
by applying nitrogen fertilization (100 kg N ha−1); however, as the dose increased, the
difference compared to the previous application tended to decrease, reaching an approx-
imately 1% difference between the dose of 400 and 500 kg of N ha −1. TAR, TMR, and
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P1/P0 showed a linear response (p < 0.05) to an increase in nitrogen dose. The TSR was not
affected by nitrogen application (p > 0.05).

Table 2. Tiller population dynamics of Tanzania grass at various doses of nitrogen fertilization.

Variable
Nitrogen Doses (kg N ha−1)

SEM p-Value
Contrast

0 100 200 300 400 500 L Q

TPD 284.0 432.7 518.9 523.6 642.7 692.1 36.06 <0.01 <0.01 0.059
TAR 0.115 0.135 0.137 0.140 0.137 0.150 0.001 0.041 0.012 0.438
TMR 0.127 0.104 0.108 0.102 0.095 0.098 0.002 0.020 0.029 0.350
TSR 0.988 0.990 0.989 0.989 0.991 0.990 0.002 0.259 0.064 0.701

P1/P0 0.999 1.003 1.003 1.003 1.005 1.005 0.002 0.003 <0.01 0.304

TPD, tiller population density; tiller m−2; TAR, tiller appearance rate; tiller 100 tiller−1 day−1; TMR, tiller mortality
rate; tiller 100 tiller−1 day−1; TSR, tiller survival rate; tiller 100 tiller−1 day−1; P1/P0, pasture stability index; SEM,
standard error of the mean; L, linear; Q, quadratic.

Increased tillering was observed during the initial months at all fertilization levels
(Figure 2). A balance occurred between the appearance and mortality of offspring; tillers at
low levels of nitrogen fertilization showed less pronounced responses than those in other
treatments. The variation in tillering dynamics when nitrogen fertilization was not applied
was smaller than that in the other treatments receiving fertilization.
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4. Discussion

Temperature, light, water availability, and soil nutrients are key elements for optimal
photosynthetic efficiency in forage grasses. In the northern Amazon region, constant tem-
peratures throughout the year, high luminosity, and well-distributed rainfall [11] result in
good photosynthetic rates; however, the supply of nutrients is suboptimal, thus negatively
influencing productivity. In this context, nitrogen, a constituent element of proteins, chloro-
phyll, and essential biochemical compounds for the growth of forage plants, is crucial
for the morphogenesis, structure, and tillering of grasses, accelerating tissue flow, and
stimulating basal buds.

In the current study, the highest LER occurred as a result of nitrogen accelerating the
pace of cell division and cell expansion, leading to greater production of photosynthate,
which is responsible for the translocation of sucrose in the plant, providing more energy for
the grass to lengthen its leaves [22–25]. These results corroborate those of previous studies
on the grass species Megathyrsus maximus, cultivars Tamani, Mombaça, and Massai [7,8,26].
These studies showed average values of up to 3700 cm for leaf tiller−1 day−1; however, the
increase in LAR was due to the same reasons, as the apical meristem has a high demand
for nitrogenous compounds, which provide greater leaf release [27] and, consequently,
accelerated leaf appearance, thus reducing the phyllochron of the forage plant [8].

Despite the accelerated rate of plant growth, the LSR was not influenced by nitro-
gen fertilization, which was due to the plant being cut at the ideal height (70 cm), after
which the net photosynthesis decreased owing to the greater shading by older leaves [28].
Leaf senescence is considered the last stage of a plant’s useful life; therefore, the lack of
difference in LSR explains why LLS did not provide a response, as the plants distributed
photoassimilates uniformly among all leaves, maintaining the lifespan of the plant [29].

Upon reaching the ideal grazing point (95% light interception or approximately 70 cm
in height), competition for light between tillers increases in the forage canopy [30]. This
results in a greater SER because tillers tend to seek light by lengthening their stems [8,30,31].
Further, the culm is the plant’s support structure; therefore, the greater the appearance and
elongation of the leaves, the more the culm needs to resist these changes, as observed for
the variables LER and LAR [15].

NLL depends directly on the environmental conditions to be appropriately expressed [32].
Such responses can be observed in LAR, which, under higher fertilization, showed a greater
appearance of leaves in addition to SER, showing that a larger number of leaves causes an
elongation of the stem because of the shading of lower leaves.

After cutting, the fertilization treatments had greater nutritional reserves to recon-
stitute the leaf area, thus accelerating regrowth. Therefore, higher fertilization levels
corresponded to shorter times for the plant to reach the optimal cutting height [33]. Owing
to the faster regrowth rate, a greater number of harvest cycles could also be observed,
similar to results reported previously [7,8,34].

Tillering is an important mechanism for maintaining the perenniality of a pasture,
adjusting the leaf area index, and maintaining the photosynthetic efficiency of forage [35].
Our results corroborate those observed in a previous study on Mulato grass in rotational
stocking [36], showing that regardless of the residue height, nitrogen fertilization results
in greater tillering. Rapid tillering at the beginning of January (Figure 2) resulted from
offspring renewal [14]. During the dry period, tillers tend to remain longer as a form
of survival; therefore, the existence of older tillers is natural. Upon entering the rainy
season, the renewal of tillers as a result of the entry of water into the soil, together with the
application of nitrogen, maximizes tillering [36]. Moreover, grasses fertilized with higher
doses of nitrogen facilitate a higher number of regrowth cycles, which provides greater
light entry at the base of the canopy. Such light entry stimulates tiller buds, allowing for
greater tillering [37].

The effects observed on TAP show the influence of nitrogen on the dormant buds
of grass, thus increasing tillering [35,38]. Many plants, including forage grasses, exhibit
phenotypic plasticity, which is the ability to change phenological characteristics to adapt
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to environmental stimuli, including damage [39,40]. In the present study, tillering may be
considered a strategy to store reserves for tillering after cutting. The higher the dose of
nitrogen applied, the higher the nutrient levels in the soil and cutting frequencies; that is,
the plants suffered damage and had nutritional reserves to adapt to such stress.

The pasture stability index is based on the total population of tillers over time, and
values < 1.0 indicate that the appearance of tillers does not compensate for the death of
tillers and may cause an imbalance in the pasture in the future. The highest TAR and
lowest TMR in the treatments that received higher levels of fertilizer showed this positive
response. The results showed that nitrogen fertilization can maintain the perenniality of
the pasture for a longer period, owing to the greater appearance of tillers and their survival,
as discussed previously [38].

5. Conclusions

Increasing nitrogen doses accelerated the metabolism of Tanzania grass, providing
a greater increase in leaf tissue and reducing the plant’s regrowth time, which positively
affected the leaf elongation, leaf appearance, and tiller mortality rates; however, the plant
response decreased as the dose increased, and nitrogen use efficiency tended to decrease
above doses of 300 kg ha−1 year−1. It is important to highlight that, depending on the
environmental condition, different answers can be found, therefore it is necessary to study
the area where production will begin.
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