CRESCIMENTO DO DENDEZEIRO (Elaeis guineensis, Jacq), CONCENTRAÇÃO, CONTEÚDO E EXPORTAÇÃO DE NUTRIENTES NAS DIFERENTES PARTES DE PLANTAS COM 2 A 8 ANOS DE IDADE, CULTIVADAS EM LATOSSOLO AMARELO DISTRÓFICO, TAILÃNDIA, PARÁ

ISMAEL DE JESUS MATOS VIÉGAS

Tese apresentada à Escola Superior de Agricultura "Luis de Queiroz", da Universidade de São Paulo, para obtenção do título de Doutor em Agronomia, área de Concentração: Solos e Nutrição de Plantas.

PIRACICABA Estado de São Paulo – Brasil Dezembro -1993 CRESCIMENTO DO DENDEZEIRO (*Elaeis guineensis*, Jacq),
CONCENTRAÇÃO, CONTEÚDO E EXPORTAÇÃO DE NUTRIENTES
NAS DIFERENTES PARTES DE PLANTAS COM 2 A 8 ANOS
DE IDADE, CULTIVADAS EM LATOSSOLO AMARELO DISTRÓFICO,
TAILÂNDIA, PARÁ

ISMAEL DE JESUS MATOS VIÉGAS (Engenheiro Agrânomo)

Orientador: Prof. Dr. RONALDO IVAN SILVEIRA

Tese apresentada à Escola Superior de Agricultura "Luiz de Gueiroz", da Universidade de São Paulo, para obtenção do título de Doutor em Agronomia, Área de Concentração: Solos e Nutrição de Plantas.

PIRACICABA Estado de São Paulo - Brasil Dezembro - 1993 The state of the s

Ficha catalográfica preparada pela Seção de Livros da Divisão de Biblioteca e Documentação - PCLG/USP

V656c

Viegas, Ismael de Jesus Matos Crescimento do dendezeiro (Elaeis guineensis, Jacq), concentração, conteúdo e exportação de nutrientes nas diferentes partes de plantas com 2 a 8 anos de idade, cultivadas em latossolo amarelo distrófico, Tailândia, Pará. Piracicaba, 1993.

217p.

Tese - ESALQ Bibliografia

1. Dendê - Crescimento 2. Materia seca - Produção 3. Nutriente em dendê I. Escola Superior de Agricultura Luiz de Queiroz, Piracicaba

CDD 633.85

CRESCIMENTO DO DENDEZEIRO (Elaeis guineensis, Jacq),
CONCENTRAÇÃO, CONTEÚDO E EXPORTAÇÃO DE NUTRIENTES
NAS DIFERENTES PARTES DE PLANTAS COM 2 A 8 ANOS
DE IDADE, CULTIVADAS EM LATOSSOLO AMARELO DISTRÓFICO,
TAILÂNDIA, PARÁ

ISMAEL DE JESUS MATOS VIÉGAS

Aprovada em: 07.02.1994

Comissão Julgadora:

Prof. Dr. Ronaldo Ivan Silveira Prof. Dr. Quirino A. de C. Carmelo Dr. Dilson Augusto Capucho Frazão Dr. Newton Bueno

Dr. Olinto Gomes da Rocha Neto

ESALQ/USP ESALQ/USP CPATU/EMBRAPA CPAA/EMBRAPA CPATU/EMBRAPA

Prof. Dr. RONALDO IVAN SILVEIRA

Orientador

Este trabalho é dedicado "in memorian" da minha querida e saudosa esposa Rosemary Moraes Ferreira Viégas, a quem continuo amando, que dedicou a sua vida à família sempre com carinho e amor, e ainda encontrou tempo para a pesquisa e a poesia.

Aos meus queridos filhos Ingrid, Ulisses e Pablo, razão da minha vida

OFEREÇO

"Ninguém morre enquanto permanece vivo no coração de alguém"

Pe. Carlos A. Schmitt

AGRADECIMENTOS

Gostaria de expressar minha imensa gratidão a várias pessoas que me ajudaram na concretização do curso de pós-graduação e deste trabalho de tese, mas torna-se impossível mencionar a todas.

- Ao Prof. Dr. Henrique Paulo Haag "in memorian", um amigo, mestre, incentivador e orientador, sempre interessado em estudar a nutrição de plantas da Amazônia, serei eternamente grato pelo privilégio de o ter conhecido;
- Ao Prof. Dr. Ronaldo Ivan Silveira, pela orientação, apoio e amizade;
- À Sônia Botelho e Héraclito da Conceição,
 pela valiosa colaboração na coleta dos dados;
- A minha mãe Irani, aos meus irmãos Ana e Sérgio, ao amigo Raimundo Gama e à família de Áyres Rodrigues, pela ajuda e solidariedade nos momentos difíceis;
- Ao Antônio Souza, Carlos Veloso, Amoacy Fabrício, Tatiana Sá e Tânia Nucci, pela amizade e pelo convívio durante o curso;
- Ao amigo Raimundo Parente, pela valiosa ajuda nas análises estatísticas e ao Antonio Muller pelas sugestões;
- Ao Francisco Padilha, gerente da plantação da CRAI (Companhia Real Agroindustrial) e demais funcionários pela ajuda na execução deste trabalho;

Ismael de Jesus Matos Viégas, filho de José Maria Viégas e Irani Aquino Matos Viégas, nasceu em Rosário, Maranhão, em 14 de agosto de 1946.

Em dezembro de 1971, graduou-se em Agronomia pela Escola de Agronomia da Amazônia, atual Faculdade de Ciências Agrárias do Pará - FCAP.

Em janeiro de 1972, foi contratado pelo serviço de extensão rural da ACAR - Maranhão, realizando o pré-serviço em Caucaia - Ceará.

Em fevereiro de 1973, foi contratado pelo convênio SUDHEVEA/DNPEA/IPEAN.

A partir de janeiro de 1974, foi contratado pela Empresa Brasileira de Pesquisa Agropecuária, trabalhando inicialmente no Centro de Pesquisa de Seringueira e Dende, Convênio EMBRAPA/FCAP e Unidade de Execução de Pesquisa de Âmbito Estadual — UEPAE/Belém.

Em agosto de 1985, concluiu o curso de mestrado em Solos e Nutrição de Plantas, na Escola Superior de Agricultura "Luiz de Queiroz".

A partir de março de 1990, iniciou ao nível de doutorado o curso de Solos e Nutrição de Plantas, na ESALG.

Atualmente é pesquisador do Centro de Pesquisa Agroflorestal da Amazônia Oriental - CPATU/Belém.

SUMÁRIO

	Página
AGRADECIMENTOS	i∨
CURRICULUM VITAE	V
LISTA DE TABELAS	i×
LISTA DE FIGURAS	xiii
RESUMO	××
SUMMARY	××iii
1. INTRODUÇÃO	01
2. REVISÃO DE LITERATURA	05
2.1. Crescimento do dendezeiro	05
2.2. Concentração de nutrientes	09
2.3. Acúmulo de nutrientes	23
2.4. Exportação de nutrientes	26
3. MATERIAL E MÉTODOS	36
3.1. Caracterização da área experimental	36
3.1.1. Localização, clima e solo da área ex-	
experimental	36
3.2. Amostragem das palmeiras	41
3.2.1. Amostragem no campo	41
3.2.1.1. Foliolos	42
3.2.1.2. Ráquis e pecíolos	43
3.2.1.3. Frutos, espiguetas e pedún-	
culos	43
3.2.1.4. Inflorescências masculinas .	44
3.2.1.5. Flechas	45
3.2.1.6. "Cabbage"	45
3.2.1.7. Estipe	46
3.3. Tratamento das amostras no laboratório	46

			Página
	3.4.	Análise química das palmeiras	46
	3.5.	Delineamento experimental e variáveis estu-	
		dadas	47
4.	RESU	LTADOS E DISCUSSÃO	49
	4.1.	Crescimento	4.9
		4.1.1. Altura das plantas e circunferência	
		do coleto	49
		4.1.2. Produção de matéria seca	52
	4.2.	Extração de macronurientes	62
		4.2.1. Nitrogênio	62
		4.2.1.1. Concentração	62
		4.2.1.2. Acúmulo	68
		4.2.2. Fósforo	75
		4.2.2.1. Concentração	75
		4.2.2.2. Acúmulo	84
		4.2.3. Potássio	36
		4.2.3.1. Concentração	36
		4.2.3.2. Acúmulo	93
		4.2.4. Cálcio	97
		4.2.4.1. Concentração	97
		4.2.4.2. Acúmulo	101
		4.2.5. Magnésio	107
		4.2.5.1. Concentração	107
		4.2.5.2. Acúmulo	110
		4.2.6. Enxofre	114
		4.2.6.1. Concentração	114
		4.2.6.2. Acúmulo	117
	4.3.	Extração de micronutrientes	121
		4.3.1. Cloro	121
		4.3.1.1. Concentração	121
		4.3.1.2. Acúmulo	127

	Pagina
4.3.2. Cobre	128
4.3.2.1. Concentração	128
4.3.2.2. Acúmulo	134
4.3.3. Boro	139
4.3.3.1. Concentração	139
4.3.3.2. Acúmulo	144
4.3.4. Ferro	145
4.3.4.1. Concentração	145
4.3.4.2. Acúmulo	149
4.3.5. Manganês	151
4.3.5.1. Concentração	151
4.3.5.2. Acúmulo	158
4.3.6. Zinco	159
4.3.6.1. Concentração	159
4.3.6.2. Acúmulo	165
4.4. Extração total de nutrientes	167
4.4.1. Macronutrientes	167
4.4.2. Micronutrientes	178
4.4.3. Acréscimos percentuais da extração)
total de nutrientes	185
4.5. Exportação de nutrientes	191
4.5.1. Macronutrientes	191
4.5.2. Micronutrientes	201
5. CONCLUSÕES	207
REFERÊNCIAS BIBLIOGRÁFICAS	209

LISTA DE TABELAS

TABELA NO	Página
Ol Matéria seca (kg/palma) em dendezeiros de diferentes idades na Nigéria e Malásia	08
O2 Concentração de nutrientes na matéria se- ca em diferentes componentes e idade do dendezeiro	12
03 Conteúdo de nutrientes em diferentes com-	
ponentes e idades do dendezeiro	27
O4 Análise química e física das amostras de solo das áreas utilizadas na profundidade de O a 30 cm de profundidade	40
05 Idades, parcelas, produções e adubação utilizadas nos dendezeiros amostrados	41
O6 Altura da planta, circunferência do cole- to do dendezeiro e seus respectivos in- crementos em função da idade	50
07 Produção de matéria seca dos diferentes componentes do dendezeiro, em função da idade	53
OB Produção e distribuição percentual de matéria seca na copa, estipe, cachos e inflorescências masculinas no dendezeiro,	
em função da idade	55

エス

アイア

1

1

1

E

1

-

1

I

1

I

I

1

126

130

131

132

168

174

179

percentual

LISTA DE FIGURAS

FIGURA Nº		Página
01	Localização geográfica da área experimen- tal no Estado do Pará	38
02	Precipitação pluviométrica na plantação comercial da Companhia Real Agroindustrial no período de 1983 a 1991	39
03	Altura das plantas e circunferência do colleto do dendezeiro, e função da idade	 54
04	Produção total de matéria seca na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade	5 4
05	Distribuição percentual de matéria seca na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em funcão da idade	61
06	Produção total de matéria seca no dende- zeiro, em função da idade	61
07	Equações de regressão do acúmulo de maté- seca nos diferentes componentes do dende- zeiro, em função da idade	54
08	Concentração de nitrogênio nos diferentes componentes do dendezeiro, em função da idade	4 9

90

95

Págin		FIGURA Nº
77	Acúmulo de nitrogênio (a), fósforo (b) e potássio (c) na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade	09
78	Distribuição percentual do acúmulo de nitrogênio (a), fósforo (b) e potássio (c) na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade	10
79	Equações de regressão do acúmulo de nitro- gênio nos diferentes componentes do dende- zeiro, em função da idade	11
88	Concentração de fósforo nos diferentes componentes do dendezeiro, em função da idade	12
	Equações de regressão do acimulo de fós-	13

foro nos diferentes componentes do dendezeiro, em função da idade

Concentração de potássio nos diferentes componentes do dendezeiro, em função da

idade

Equações de regressão do acúmulo de potássio nos diferentes componentes do dendezeiro, em função da idade

14

15

URA Nº	Página
--------	--------

	Concentração de cálcio nos diferentes componentes do dendezeiro, em função da	16
99	idade	
	Acúmulo de cálcio (a), magnésio (b) e	17
	enxofre (c) na copa, estipe, cachos e in-	
	florescências masculinas no dendezeiro, em	
104	função da idade	
	Distribuição percentual do acúmulo de cál-	18
	cio (a), magnésio (b) e enxofre (c) na	
	copa, estipe, cachos e inflorescências	
	masculinas no dendezeiro, em função da	
105	idade	
	Equações de regressão do acúmulo de cál-	19
	cio nos diferentes componentes do dende-	
106	zeiro, em função da idade	
	Concentração de magnésio nos diferentes	20
	componentes do dendezeiro, em função da	
112	idade	
	Equações de regressão do acúmulo de magné-	21
	sio nos diferentes componentes do dende-	
113	zeiro, em função da idade	
	Concentração de enxofre nos diferentes	22
	componentes do dendezeiro, em função da	
116	idade	

圆

题

FIGURA Nº		Página
23	Equações de regressão do acúmulo de enxo- fre nos diferentes componentes do dende- zeiro, em função da idade	120
24	Concentração de cloro nos diferentes com- ponentes do dendezeiro, em função da idade	125
25	Acúmulo de cloro (a), cobre (b) e bo- ro (c) na copa, estipe, cachos e inflo- rescências masculinas no dendezeiro, em função da idade	135
26	Distribuição percentual do acúmulo de cloro (a), cobre (b) e boro (c) na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade	136
27	Equações de regressão do acúmulo de clo- ro nos diferentes componentes do dende- zeiro, em função da idade	137
28	Concentração de cobre nos diferentes com- ponentes do dendezeiro, em função da idade	141
29	Equações de regressão do acúmulo de co- bre nos diferentes componentes do dende- zeiro, em função da idade	142

			xvii
-	FIGURA Nº		Página
) all the control of			
)	30	Concentração de boro nos diferentes com-	
A constitution of		ponentes do dendezeiro, em função da	
		idade	143
	31	Equações de regressão do acúmulo de bo-	
		ro nos diferentes componentes do dende-	
<u> </u>		zeiro, em função da idade	147
	32	Concentração de ferro nos diferentes com-	
		ponentes do dendezeiro, em função da	
		idade	148
O MARINE STATE	33	Acúmulo de ferro (a), manganês (b) e zin-	
9		co (c) na copa, estipe, cachos e inflo-	
- Andrews		rescências masculinas no dendezeiro, em	
		função da idade	153
J.	34	Distribuição percentual do acúmulo de fer-	
		ro (a), manganês (b) e zinco (c) na copa,	
		estipe, cachos e inflorescências mascu-	
		linas no dendezeiro, em função da ida-	
		de	154
	35	Equações de regressão do acúmulo de fer-	
		ro nos diferentes componentes do dende-	
		zeiro, em função da idade	155
	36	Concentração de manganês nos diferentes	
		componentes do dendezeiro, em função da	
		idade	156
.)			

×viii

FIGURA Nº		Página
37	Equações de regressão do acúmulo de manga- nês nos diferentes componentes do dende- zeiro, em função da idade	160
38	Concentração de zinco nos diferentes componentes do dendezeiro, em função da	
	idade	161
39	Equações de regressão do acúmulo de zin- co nos diferentes componentes do dende- zeiro, em função da idade	162
40	Quantidade imobilizada, reciclada e exportada de nitrogênio (a), fósforo (b) e potássio (c) no dendezeiro, em função da idade	171
41	Quantidade imobilizada, reciclada e exportada de cálcio (a), magnésio (b) e enxofre (c) no dendezeiro, em função da idade	173
42	Acúmulo total de macronutrientes e de clo- ro no dendezeiro, em função da idade	177
43	Distribuição percentual do acúmulo total de macronutrientes no dendezeiro, em função da idade	177
44	Equações de regressão do acúmulo total de macronutrientes e de cloro no dendezeiro, em função da idade	180

45	Quantidade imobilizada, reciclada e expor-	
	tada de cloro (a), cobre (b) e boro (c) no	
	dendezeiro, em função da idade	183
46	Quantidade imobilizada, reciclada e expor-	
	tada de ferro (a), manganês (b) e zinco	
	(c) no dendezeiro, em função da idade	184
	T .	
47	Acúmulo total de micronutrientes no dende-	
	zeiro, em função da idade	186
48	Distribuição percentual do acúmulo total	
	de micronutrientes no dendezeiro, em fun-	
	ção da idade	186
49	Equações de regressão do acúmulo total de	
	micronutrientes no dendezeiro, em função	
	da idade	187

CRESCIMENTO DO DENDEZEIRO (*Elaeis guineensis*, Jacq),
CONCENTRAÇÃO, CONTEÚDO E EXPORTAÇÃO DE NUTRIENTES
NAS DIFERENTES PARTES DE PLANTAS COM 2 A 8 ANOS
DE IDADE, CULTIVADAS EM LATOSSOLO AMARELO DISTRÓFICO,
TAILÂNDIA, PARÁ

Autor: Ismael de Jesus Matos Viégas Orientador: Prof. Dr. Ronaldo Ivan Silveira

RESUMO

Dendezeiros (*Elaeis guineensis*, Jacq.) com 2, 3, 4, 5, 6, 7 e 8 anos de idade no campo, cultivados num Latossolo Amarelo distrófico na ecorregião de Tailândia, PA foram coletados em plantações da CRAI (Companhia Real Agroindustrial). Cada planta foi separada nos componentes: folíolos, pecíolos, ráquis, "cabbage" (termo inglês usado para designar o conjunto de folhas chamado palmito), flechas, estipe, inflorescências masculinas, pedúnculos, espiguetas e frutos para determinação de produção de matéria seca e teor de nutrientes. Foram avaliados também altura das plantas, circunferência do coleto e as quantidades acumuladas, recicladas, imobilizadas e exportadas de nutrientes.

Os principais resultados mostraram que:

- A produção de matéria seca foi lenta até o terceiro e quarto anos tornando-se mais intensa a partir do

quinto ano até o final do período de observação. Contudo, cito anos não foi tempo suficiente para se atingir o máximo de produção de matéria seca. A contribuição dos diferentes componentes na produção de matéria seca da planta obedeceu à seguinte ordem decrescente: estipe > pecíolos > folíolos > ráquis > frutos > espiguetas > inflorescências masculinas > pedúnculos > flechas > "cabbage".

- A concentração dos nutrientes nos diferentes componentes aumentou com a idade dos dendezeiros com exceção do potássio. As maiores concentrações de nutrientes ocorreram no "cabbage" e a ordem relativa da concentração de macronutrientes nas diferentes partes da planta foi: N > K > Ca > Mg > P > S.
- O acúmulo de nutrientes nos diferentes componentes aumentou com a idade das plantas sendo os maiores valores observados no estipe, com exceção do Mn. A ordem decrescente de acúmulo de macronutrientes foi: K > N > Ca > Mg > S > P e a dos micronutrientes: Cl > Fe > Mn > Zn > B > Cu.
- As quantidades imobilizadas de K, S, Cl, Cu, B, Fe e Zn superaram as recicladas e removidas. Para o Ca e Mg a reciclada foi maior que a imobilizada. Para todos os nutrientes a quantidade reciclada foi maior que a exportada.
- A exportação de nutrientes aumentou com a idade e apresentou a mesma seqüência da quantidade acumulada.

 O porcentual de exportação de nutrientes em relação à

extração pela planta no oitano ano foi: P = K > Mg > S > Ca = Cu = Cl = B > N > Mn = Zn > Fe.

GROWTH OF OIL PALMS (*Elaeis guineensis* Jacq.) NUTRIENT CONCENTRATION, CONTENT AND EXPORT IN THE VARIOUS PARTS OF PLANTS FROM 2 TO 8 YEARS OLD IN AGE IN THE FIELD GROW ON A DISTROPHIC YELLOWS LATOSSOL OF TAILANDIA, PA

Author: Ismael de Jesus Matos Viégas Adviser: Prof. Dr. Ronaldo Ivan Silveira

SUMMARY

Oil palm trees 2, 3, 4, 5, 6, 7 and 8 years old, grown on a distrophic Yelow Latossol (Oxissol) of Tailandia, PA, Brazil were collected at CRAI (Companhia Real Agroindustrial) plantations. The plants were sampled and split into their various organs (leaflets, petioles, rachis, cabbage, spear fronds, trunk, male inflorescences, peduncules, trashes and fruits) were analysed for dry matter production and nutrient concentration. Growth parameters, nutrient content, immobilized, recycled and exported were also determined.

The results showed that:

and 4th years showing a sharp increase from this time to the last year of observation. Eight years, however, were not sufficient for the plants to reach the maximum dry matter production. The contribution of the various components for

the total dry matter production was decreasingly ranked as follows: trunk > petioles > leaflets > rachis > fruits > trashes > male inflorescences > peduncules > spear fronds > cabbage.

- The nutrient concentration in the various components increased with age, except potassium. The highest nutrient concentration were found in cabbage and the macronutrient concentration in the various components obeyed the decreasing order: N > K > Ca > Mg > P > S.
- Nutrient accumulation in the various organs also increased with plant age and the higher values were observed in the trunk, except in the case of Mn. Macronutrient accumulation was ranked as follows: K > N > Ca > Mgh > S > P while accumulation of micronutrientes was ranked as: C1 > Fe > Mn > Zn > B > Cu.
- The immobilized amounts of K, S, Cl, Cu, B, Fe and Zn were higher than those either recycled or exported. The recycled amounts of Ca and Mg were higher than those immobilized. The amounts of recycled nutrients were higher than those exported.
- The amounts of nutrients exported increased with age and followed the same pattern of the accumulated. The percentage of nutrient export as related to the total accumulated amount by the oil palm, in the eight year after planting, was ranked as follows: P = K > Mg > S > Ca = Cu = Cl = B > N > Mn = Zn > Fe.

1. INTRODUÇÃO

O dendezeiro (*Elaeis guineensis*, Jacq.) é uma palmeira produtora de óleo introduzida, no Brasil pelos africanos na época da escravatura originando os dendezais subespontâneos localizados ao longo da costa brasileira, que se concentram mais no Recôncavo Baiano e nos tabuleiros costeiros.

Dos frutos do dendezeiro são extraídos dois tipos de óleos, um da polpa e outro da amêndoa com larga utilização na alimentação e na indústria. No Brasil, 40% da produção de óleo de dendê é consumida na siderurgia nacional na laminação de aço, 30% nas indústrias de sabonetes, velas e cosméticos e o restante nas fábricas de saboes (MAIA et al., 1980).

O dendezeiro inicia a sua produção no terceiro ano, podendo sua exploração se estender até os 30 anos. É a oleaginosa de maior produtividade com 3 a 8 toneladas de óleo/ha/ano, produzindo durante todo o ano, o que representa uma vantagem que é a de ocupar a mão-de-obra de forma intensiva e continua.

4,1

Além de proporcionar lucratividade, o cultivo do dendezeiro se insere nos critérios do desenvolvimento sustentado, devido à sua capacidade de conservação ambiente. Pelo fato de recuperar áreas degradadas, como consequência da agricultura itinerante praticada na Amazônia. a dendeicultura atualmente implantada nessas ecorregiões, apresenta forte caráter sócio-ambiental, um inclusive com a ajuda de órgãos nacionais e de entidades internacionais. Na opinião de UEXKULL (1985a), poucas culturas têm alcançado tanto progresso agronômico como a do dendezeiro. Uma das evidências está na produtividade, há 30 anos era menor que 3 t de óleo/ha/ano, em 1980 alcançou 8 t, e a expectativa na Malásia, o maior produtor, para antes do final deste século, é de 10 a 12 t/ha/ano.

Na Amazônia brasileira o primeiro plantio dendezeiro foi em 1951, através do antigo Agronômico do Norte (IAN), hoje Centro de Pesquisa Agroflorestal da Amazônia Oriental (CPATU), que introduziu linhagens oriundas da África para verificar adaptabilidade e seu potencial na região (MULLER, 1979). Foram portanto as primeiras pesquisas no Brasil com o dendezeiro. Em moldes empresariais o cultivo do dendê no Estado do Pará, foi iniciado em 1968, com a implantação no final de 1974 de 1500 ha pela Superintendência Desenvolvimento da Amazônia (SUDAM), vendido posteriormente para a empresa DENPASA - Dendê do Pará S.A.

11 2/s

V

Decorridas quatro décadas do primeiro plantio, a dendeicultura no País, alcançou algum progresso. Apresenta hoje uma área plantada em torno de 60.000 ha, sendo o Pará responsável por 60% dessa área. A produção de óleo no país que era de 14.000 t em 1979/1981, atingiu em 1991, segundo dados da F.A.O. (1991), 69.900 t de óleo. O consumo nacional de óleo de palma é de 400 mil toneladas por ano e apenas 17% desse total é produzido no Brasil, havendo, deste modo, um mercado bastante promissor.

O País, na área da Amazônia e no sul da Bahia, dispõe de extensas áreas com condições edafoclimáticas propícias para a expansão da dendeicultura. Apesar destas condições favoráveis, há necessidde de solucionar, atraves de ações de pesquisa vários problemas limitantes ao cultivo, destacando-se dentre eles a baixa produtividade média dos dendezais nacionais, com 3 a 4 toneladas de óleo/ha/ano. Um dos principais fatores responsáveis pela baixa produtividade são, a nutrição e a adubação inadequada. Existem poucas informações sobre o assunto na Amazônia, pois somente em 1968 se iniciaram as pesquisas nessas áreas, no município de Benevides - Pará, com publicação dos resultados por PACHECO et al. (1985).

O conhecimento sobre o crescimento, concentração e exportação de nutrientes nas diferentes partes de uma planta, desde os estágios iniciais até a fase de produção é uma exigência básica indispensável para se progamar uma adubação eficiente e se obter uma nutrição adequada, visando

alta produtividade. Partindo-se da hipótese de que a producao de matéria seca e acumulação de nutrientes, pelos diferentes órgãos do dendezeiro, variam em função da idade, infere-se que o conhecimento mais eficaz sobre essas características, conduziria à uma adubação mais adequada. O uso indiscriminado de fertilizantes, sem o conhecimento das reais necessidades dessa palmacea, pode levar o dendeicultor à duas situações. A primeira de fornecê-los em excesso, causando um desperdício dos fertilizantes, desbalanço nutricional e, principalmente, aumentando os custos de produção, uma vez que as despesas com adubação num dendezal representam cerca de 60% dos custos de manutenção. A segunda, de aplicar os fertilizantes aquém das reais necessidades da planta condicionando baixa produtividade da cultura.

Levando-se em consideração esses fatos foi realizado o presente trabalho com os seguintes objetivos:

- analisar o crescimento do dendezeiro através
 da produção de matéria seca, altura da planta e circun ferência do coleto;
- determinar a concentração e a quantidade
 extraída dos macro e micronutrientes nos diversos componentes do dendezeiro, em função da idade;
- determinar a quantidade imobilizada e reciclada de nutrientes;
- quantificar a exportação de macro e micronutrientes com a colheita dos cachos.

2. REVISÃO DE LITERATURA

2.1. Crescimento do dendezeiro

Em virtude das grandes diferenças nos rendimentos dos cachos encontrados entre as regiões onde se cultiva o dendezeiro em moldes econômicos, os estudos sobre o crescimento dessa palmácea têm se mostrado importante (HARTLEY, 1983). Estudos realizados sobre o crescimento e a produção de matéria seca na Malásia e Nigéria, têm esclarecido as diferenças de produção entre esses países.

O crescimento em altura do dendezeiro tem sido objeto de várias pesquisas, sendo um dos caracteres mais importantes no melhoramento genético. Esta importância se deve à sua influência na vida econômica de uma plantação de dendezeiro, pois condiciona a sua exploração. Do ponto de vista econômico, é desejável um crescimento vertical lento do dendezeiro, para que haja maior longevidade da produção e facilide da colheita.

JACQUEMARD (1979), constatou nas condições da Costa do Marfim-África, que o dendezeiro até os três anos de idade, cresce mais diametralmente e muito pouco no sentido longitudinal e que a velocidade de crescimento longitudinal aumenta progressivamente do terceiro ao sexto ano, se estabilizando em um valor médio anual, segundo as condições climáticas, dos seis aos vinte cinco anos.

Pesquisas mais recentes realizadas por JACQUEMARD e BAUDOUIN (1987), permitiram constatar um aumento progressivo da velocidade de crescimento, que alcançou um nível máximo ao redor do décimo ano, para posteriormente diminuir gradualmente.

Na Malásia, NG et al. (1968a), verificaram que o crescimento do dendezeiro nos primeiros anos foi elevado, reduzindo gradualmente até o oitavo e ficando praticamente estabilizado do nono ao décimo quinto ano.

O crescimento do dendezeíro é influenciado por vários fatores, destacando-se os genéticos e os climáticos.

NOIRET & GASCON (1967), verificaram diferenças no crescimento entre as variedades Tenera e Dura, por outro lado, Beirnaert e Vanderweyen (1941)¹, citados por JACQUEMARD & BAUDOUIN (1987), concluíram que o crescimento do estipe não diferiu entre as variedades. Os fatores climáticos também tem sido investigados merecendo destacar o trabalho realizado por JACQUEMARD (1979), que constatou variação no crescimento de um mesmo material genético, apontando como causa principal a precipitação pluviométrica.

¹ BEIRNAERT, A. & VANDERWEY, R. Contribution à l'etude génetique et biometrique des varietés d'*Elaeis guianensis* (Jacq.). INEAC Série Scientifique, nº 27, 1941.

Visando avaliar o crescimento do dendezeiro em várias idades, com base na produção de matéria seca, HARTLEY (1983), comparou os resultados obtidos na Nigéria e Malásia, conforme pode-se observar pelos dados contidos na Tabela 1.

Observa-se que os pesos secos do tronco foram folhas foram notavelmente semelhantes. enquanto nas Segundo o pesquisador, devido superiores na Malásia. possivelmente à um espaçamento mais amplo. Esses resultados obtidos na Nigéria, devem ter sido influenciados também, pelos fortes déficits hídricos comuns naquele país, os quais condicionam o crescimento e produção do dendezeiro. Com relação à matéria seca das raízes, a grande diferença nas palmeiras de 17 anos de idade, foi atribuído em parte às metodologías de extração e as diferenças entre os solos das duas regiões.

Nas pesquisas realizadas na Nigéria por REES & TINKER (1963), houve incremento na matéria seca total até vinte anos, ocorrendo uma redução aos vinte e dois anos. Este estudo também incluiu um grupo de três palmeiras de 22 anos com deficiência nítida de potássio e um grupo de 21 anos com carência de magnésio. Nestas ocorreu redução de matéria seca como era esperado, quando comparadas com as palmas da mesma idade sem deficiências. Nos componentes do dendezeiro os referidos pesquisadores, encontraram aos 7, 10, 14, 17, 20 e 22 anos de idade a seguinte ordem decrescente na produção de matéria seca: estipe > ráquis > folíolos > "cabbage".

Tabela 1. Matéria seca (kg/planta) em dendezeiros de diferentes idades na Nigéria e Malásia.

Idade (anos)	Pais	Folhas	Estipe	Folíolo e "cabbage"	Raiz	Total
7	Nigéria	67,4	82,3	4,5		154,2
6,5	Malásia	118,4	78,9	8,8	40,6	246,7
10	Nigéria	90,7	171,0	5,9		267,6
10,5	Malásia	161,1	145,3	10,8	49,0	366,2
14	Nigéria	86,0	238,7	4,5	_	329,2
14,5	Malásia	168,2	232,6	11,3	68,9	481,0
17	Nigéria	95,0	280,0	10,7	128,0	402,4
17,5	Malásia	140,2	290,7	11,9	61,6	504,4
20	Nigéria	150,0	439,0	9,0	-	598,0
22	Nigéria	111,4	389,0	10,8		411,2
27,5	Malásia	115,4	300,5	8,8	130,8	555,5

Fonte: HARTLEY (1983).

A produção de matéria seca em plantas de dendezeiros nas idades de 1 a 15 anos, também foi pesquisada por NG et al. (1968a), nas condições da Malásia. Os principais resultados obtidos foram: a) nos primeiros anos a producão de matéria seca da copa foi prolífera até o quinto ano, sendo que a partir desta idade ocorreu uma estabilização; b) a maior demanda de matéria seca do tronco iniciou no quinto ano, e após esse estádio, foi mantida uma alta taxa de crescimento relativo, quando comparada à raiz e copa; c) a

matéria seca total se apresentou intimamente relacionada com a do tronco na fase adulta.

Estudos mais recentes sobre o crescimento do dendezeiro com base na produção de matéria seca, foram conduzidos por DUFRENE (1985) em plantas com 13 anos de idade, na África, obtendo 77,6 t/ha incluindo os frutos. Na Costa do Marfim, Jafre (1984)², citado por DUFRENE et al. (1990), encontrou 37,5 t/ha em palmeiras de nove anos, sem incluir os cachos.

2.2. Concentração dos nutrientes

O conhecimento da concentração dos nutrientes nos diversos órgãos da planta em sucessivos estádios de desenvolvimento, é condição essencial para ajudar no entendimento de problemas nutricionais e nas recomendações de adubação.

Na cultura do dendezeiro as concentrações nos foliolos têm sido utilizadas para determinar o nível crítico na folha 17. As primeiras investigações sobre níveis críticos em dendezeiros, foram realizadas por BACHY (1964), sugerindo para palmeiras adultas na folha 17, as concentrações: 2,60% para N, 0,150% P, 1,00% K, 0,60% Ca, e 0,24% Mg.

JAFRE, T. Evolution de la biomasse épigée e du stock de carbone d'une culture pérenne: le palmier à huile (Elaeis guineensis Jacq.). Rapport ORSTOM. Abidgan Câte-d'Ivoire, 9p. 1984.

Pesquisas mais recentes desenvolvidas por OLLAGNIER & OCHS (1781), mostraram que o nivel critico do fósforo é dependente do nitrogênio, com relação linear P(%) = 0,0487% N + 0,039, e que esses níveis variam com a idade do dendezeiro, ou seja: na idade de 5 a 9 anos nível critico de 2,65% de nitrogênio e 0,168% de fósforo; de 10 a 15 anos com 2,55% de nitrogênio e 0,163% de fósforo, de 16 a 20 anos com 2,45% de nitrogênio e 0,158% de fósforo e finalmente para palmeiras com mais de 20 anos de idade o nível critico de 2,35% de nitrogênio e 0,153% de fósforo. Portanto, com o envelhecimento do dendezeiro há uma redução nos teores de nitrogênio e fósforo.

No sudoeste da Ásia, tem sido propostas faixas de concentrações ótimas para o fósforo, na folha 17, diminuindo à medida que as palmeiras se tornam mais velhas (NG, 1986), como segue: na idade de 1 a 3 anos a faixa ótima de fósforo seria de 0,170 a 0,190%; de 4 a 9 anos de 0,160 a 0,170%; de 10 a 15 anos de 0,155 a 0,165%; de 16 a 20 anos de 0,150 a 0,155% e finalmente na idade de 21 a 25 anos a faixa ótima de 0,140 a 0,150%.

Os níveis críticos dos micronutrientes no dendezeiro ainda não estão completamente definidos.

OLLAGNIER & OCHS (1971a), sugerem como nível crítico para o cloro, 0,35% da matéria seca da folha 17, enquanto para UEXKULL & FAIRHUST (1991), a concentração ótima seria de 0,45% a 0,60% de cloro.

ROGNON (1984), recomenda para palmeiras adultas os micronutrientes cobre, ferro e zinco as seguintes

faixas ótimas de concentração: Cu - 5 a 8 ppm, Fe - 50 a 250 ppm e Zn - 12 a 18 ppm. Já para o boro o nível crítico seria de 10 ppm, enquanto UEXKULL & FAIRHUST (1991), sugerem a faixa ótima de 15 a 25 ppm de boro.

No levantamento do estado nutricional do dendezeiro em diversas localidades PREVOT (1959), assinalou teores de 3 a 13 ppm de boro, na folha 17.

O teor ótimo de manganês recomendado por ROGNON (1984) é de 50 ppm, e que para se obter resposta com a aplicação desse micronutriente, a concentração seria de 20 ppm de Mn.

Em dendezeiros jovens cultivados em solução nutritiva, DUFOURT & QUENCEZ (1979), encontraram nas plantas normais teores de 235 ppm de manganês, enquanto nas deficientes o nível nesse micronutriente era de 22 ppm.

PREVOT (1959), verificou ao estudar o estado nutricional do manganês no dendezeiro, em diversas regiões onde se cultiva essa palmeira, uma forte variação na sua concentração, ou seja, valores de 100 a 1400 ppm.

A Tabela 2, resume os teores dos macro e micronutrientes encontrados em vários trabalhos em diferentes componentes do dendezeiro, condições de cultivo, ecorregiões, idades, etc. Nesta revisão deu-se ênfase aos componentes extra folíolos, pois a maioria dos dados existentes, são referentes às concentrações dos folíolos na folha 17, existindo poucos trabalhos sobre a concentração de nutrientes nos demais componentes do dendezeiro.

Tabela 2 - Concentração de nutrientes na matéria seca em diferentes componentes e idade do dendezeiro.

N. (%) Africar-Costs do Narfin Foliolos F9 3 3,05 3,0	Nutriente	Local	Componente	Idade (anos)	Teor	Autor(es)
(%) Minical Coose do Martin Polifolos F17 3 2.45-6 2.55-2.40-2.50-2.40-2.30 RACHT et al. Folifolos F17 3-4-5-6 2.55-2.40-2.50-2.40-2.30 RACHT et al. Folifolos F17 3-4-5-6 2.55-2.40-2.50-2.40-2.30 RACHT (1965) RACHT et al. Racht (1965) RACHT (1965) RACHT et al. Racht (1965) RACH	l .	Africa-Costa do Marfim	Folfolos F9	3	3,05	BACHY (1964)
(%) Maiāsia—0. Durtām (%) Maiāsia—1. Durtām (%) Maiāsia (%) Maiā		Africa-Costa do Marfim	Foliolos F17	3	2,88	BACHY (1964)
(%) Kritarla Met (PA) Foliolos F17 3-4-5-6 2,56-2,47-2,63-2,772 GORGA (K) Kritarla Met (Poliolos F17 3-10 2,55-2,80 2,56-2,47-2,72 BACHN (K) Kritarla Met (K) Foliolos F17 3-10 2,55-2,42 BACHN (K) Kritarla Dibumba (Poliolos F17 3-10 2,57-2,42 BACHN (K) Maissia-D. Durian (K) Maissia-D. Durian (A) Foliolos F17 3-10 2-3-80 Andisia-D. Durian (A) Maissia-D. Durian (A) Maissia (A) M		Malasta	Foliolos F17	5-10-15-20-25-30	2,78-2,68-2,59-2,49-2,40-2,30	
(%) Africa-Doé Folfolos F17 3-10 2,85-2,80 BACHN (%) Africa-Pobé Folfolos F17 3-10 2,57-2,42 BACHN (%) Africa-Pobé Folfolos F17 3-10 2,73-2,80 BACHN (%) Anista-D. Durtan Folfolos F17 3-10 10 a 15 0,37-0,41-0,38 NG & BACHN (%) Malásta-D. Durtan Polpa 10 a 15 0,31-0,29-0,31 NG & BACHN (%) Malásta-D. Durtan Améndoa 10 a 15 0,31-0,29-0,31 NG & BACHN (%) Malásta-D. Durtan Espláueta 10 a 15 0,48-0,52-0,31 NG & BACHN (%) Malásta-D. Durtan Espláueta 10 a 15 0,48-0,52-0,31 NG & BACHN (%) Malásta-D. Durtan Inflorescéncia 10 a 15 0,48-0,52-0,51 NG & BACHN (%) Malásta-D. Durtan Inflorescéncia 10 a 15 0,48-0,52-0,51 NG & BACHN (%) Malásta-D. Durtan Roflos 2,4-3,-4,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,		Brasil-Tailândia (PA)	Foliolos F17	3-4-5-6	2,56-2,47-2,63-2,72	CORRADO (1992)
(%) África-Pobé Folfolos FL7 3-10 2,57-2,42 BACHN (%) África-Pobé Folfolos FL7 3-10 2,73-2,80 BACHN (%) Malásia-D. Durian 10 a 15 0,37-0,41-0,38 NG & (%) Malásia-D. Durian Casca 10 a 15 0,37-0,41-0,38 NG & (%) Malásia-D. Durian Casca 10 a 15 0,37-0,41-0,38 NG & (%) Malásia-D. Durian Amindoa 10 a 15 0,78-0,83-0,93 NG & (%) Malásia-D. Durian Pedúnculo 10 a 15 0,78-0,83-0,89 NG & (%) Malásia-D. Durian Pedúnculo 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian 10 a 15 0,48-0,52-0,51 NG & (%)		África-La Mē	Foliolos F17	3-10	2,85-2,80	BACHY (1965)
(%) Midisia—1. Durian Serdang e Jerengau Madsia-D. Durian Serdang e Jerengau Maculian Malásia-D. Durian Serdang e Jerengau Maculina Malásia-D. Durian Serdang e Jerengau Maculina Malásia-D. Durian Malásia Serdang e Jerengau Maculina Malásia Mal		Africa-Pobé	Foliolos	3-10	2,57-2,42	BACHY (1965)
(%) Malásta-D. Durtan 10 a 15 0,37-0,41-0,38 NG & (%) Malásta-D. Durtan Casca 10 a 15 0,31-0,29-0,31 NG & (%) Malásta-D. Durtan Amêndoa 10 a 15 0,31-0,29-0,31 NG & (%) Malásta-D. Durtan Amêndoa 10 a 15 0,78-0,83-0,89 NG & (%) Malásta-D. Durtan Espigueta 10 a 15 0,78-0,83-0,89 NG & (%) Malásta-D. Durtan Cacho 10 a 15 0,48-0,52-0,51 NG & (%) Malásta-D. Durtan Cacho 10 a 15 0,48-0,52-0,51 NG & (%) Malásta-D. Durtan Inflorescencia 10 a 15 0,48-0,52-0,51 NG & (%) Malásta Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,2-1,04-1,48-1,11-1,93-1,9 NG & (%) Malásta Frocha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,2-1,04-1,48-1,11-1,39-1,9 NG et (%) Malásta Frocha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,2-1,04-1,48-1,11-1,39-1,9 NG et (%) <td></td> <td>África-La Dibamba</td> <td>Folfolos F17</td> <td>3-10</td> <td>2,73-2,80</td> <td></td>		África-La Dibamba	Folfolos F17	3-10	2,73-2,80	
(%) Serdang e Jerengau Polpa 10 a 15 0,31-0,41-0,38 NG & Secand and a secand an		Malasia-D. Durian				
(%) Malásta-D. Durian 10 a 15 0,31-0,29-0,31 NG (%) Malásta-D. Durian 1,35-1,24-1,30 NG (%) Malásta-D. Durian 10 a 15 1,35-1,24-1,30 NG (%) Malásta-D. Durian 10 a 15 0,78-0,83-0,89 NG (%) Malásta-D. Durian 10 a 15 0,66-0,84-0,92 NG (%) Malásta-D. Durian 10 a 15 0,66-0,84-0,92 NG (%) Malásta-D. Durian 10 a 15 0,46-0,84-0,92 NG (%) Malásta-D. Durian 10 a 15 0,46-0,84-0,92 NG (%) Malásta-D. Durian 11,00 a 15 1,68-1,72-1,80 NG (%) Malásta-D. Durian 116lorescencia 1,68-1,72-1,80 NG (%) Malásta 10 a 15 1,68-1,72-1,80 NG (%) Malásta 10 a 15 1,68-1,72-1,80 NG (%) Malásta 10 a 15 2,4-3,3-3-5,3-6,3-7,5-8,5 1,42-1,04-1,14-1,1-1,-1,2 NG (%) Malásta		Serdang e Jerengau	Polpa	ជ	0,37-0,41-0,38	రు
(%) Serdang e Jerengau Casca 10 a 15 0,31-0,29-0,31 NG (%) Malásta-D. Durian Amêndoa 10 a 15 1,35-1,24-1,30 NG (%) Malásta-D. Durian Serdang e Jerengau Espigueta 10 a 15 0,78-0,83-0,89 NG (%) Malásta-D. Durian Pedúnculo 10 a 15 0,66-0,84-0,92 NG (%) Malásta-D. Durian Acho 10 a 15 0,48-0,52-0,51 NG (%) Malásta-D. Durian Inflorescência 10 a 15 0,48-0,52-0,51 NG (%) Malásta Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,22-1,96-2,02-1,88-2,11-1,93-1,98 NG (%) Malásta Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,11-1,93-1,98 NG (%) Malásta Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,11-1,23 NG (%) Malásta Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,2-1,04-1,48-1,11-1,23 NG (%) Malásta Folcola 2,4-3,3-4,3-5,3-6,3-7,5-8,5		Malasia-D. Durian				
(%) Malásia-D. Durian 10 a 15 1,35-1,24-1,30 NG & (%) Malásia-D. Durian 10 a 15 0,78-0,83-0,89 NG & (%) Malásia-D. Durian 10 a 15 0,66-0,84-0,92 NG & (%) Malásia-D. Durian 10 a 15 0,66-0,84-0,92 NG & (%) Malásia-D. Durian 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian 10 a 15 1,68-1,72-1,80 NG & (%) Malásia-D. Durian 10 a 15 1,68-1,72-1,80 NG & (%) Malásia 10 a 15 1,48-1,12-1,80 NG & (%) Malásia 10 a 15 1,48-1,12-1,80 NG & (%) Malásia 10 a 15 1,42-0,33-7,5-8,5 1,42-1,14-1,2,3 NG et (%) Malásia 10 a 15 1,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,14-1,1,1-1,2,2 NG et		Serdang e Jerengau	Casca	ต	0,31-0,29-0,31	
(%) Malásia-D. Durian Améndoa 10 a 15 1,35-1,24-1,30 NG & Andasia-D. Durian NG & Andasia-Durian		Malasia-D. Durian				
(%) Malásta-D. Durian Espígueta 10 a 15 0,78-0,83-0,89 NG & (%) Serdang e Jerengau Pedúnculo 10 a 15 0,66-0,84-0,92 NG & (%) Malásia-D. Durian Cacho 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian Inflorescência 10 a 15 0,48-0,52-0,51 NG & (%) Malásia D. Durian Inflorescência 10 a 15 0,48-0,52-0,51 NG & (%) Malásia Darengau Cacho 10 a 15 1,68-1,72-1,80 NG & (%) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,82-1,96-2,01-1,93-1,9 NG & (%) Malásia Flocha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,16-1,3-1 NG et (%) Malásia Flocha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 3,10-2,72-2,81-2,45-2,06-3,16-3,16 NG et (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG et (%) Brasil-Tailândia Folfolos F17 3-4-5-6 0,15-0,1		Serdang e Jerengau	Amendoa	ਯ	1,35-1,24-1,30	8
(%) Malásia-D. Durian Espigueta 10 a 15 0,78-0,83-0,89 NG & (%) Malásia-D. Durian Serdang e Jerengau Pedúnculo 10 a 15 0,66-0,84-0,92 NG & (%) Malásia-D. Durian Cacho 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian Inflorescência 1,68-1,72-1,80 NG & (%) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,82-1,96-2,02-1,88-2,11-1,93-1,98 NG & (%) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,14-1,23 NG et (%) Malásia Flocha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,14-1,23 NG et (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,42-0,38-0,35-0,31-0,75-0,71-0,75 NG et (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,95-0,82-0,6-3,16-3,16-3,16-3,16-3,16-3,16-3,16-3,	(%) N	Malásia-D. Durian				
(%) Malásia-D. Durian Serdang e Jerengau Raciang e Jerengau Cacho Cacho Rafásia-D. Durian Serdang e Jerengau Cacho Cacho Rafásia-D. Durian Serdang e Jerengau Cacho Raciang e Jerengau Rasculina Serdang e Jerengau Rasculina Serdang e Jerengau Rasculina Serdang e Jerengau Rasculina Serdang e Jerengau Rasculina Racians R		Serdang e Jerengau	Espigueta	Ø	0,78-0,83-0,89	రు
(%) Serdang e Jerengau Pedúnculo 10 a 15 0,66-0,84-0,92 NG & (%) Malásia-D. Durian Cacho 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian Inflorescência 1,68-1,72-1,80 NG & (%) Malásia Derengau Masculina 10 a 15 1,68-1,72-1,80 NG & (%) Malásia Folíolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,82-1,96-2,02-1,88-2,11-1,93-1,98 NG & (%) Malásia Fricha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,14-1,23 NG et (%) Malásia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5 3,10-2,72-2,81-2,45-2,06-3,16-3,16 NG et (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG et (%) Brasil-Tailândia Folíolos FIZ 3-4-5-6 0,15-0,15-0,15-0,15-0,15 CORRA (%) África-Costa do Marfim Folíolos FIZ 3-4-5-6 0,17-0,15-0,15-0,15-0,15-0,17-0,17 BAGHY (%) África-Costa do Marfim Folíolos FIZ <t< td=""><td></td><td>Malásia-Ď. Durian</td><td></td><td></td><td></td><td></td></t<>		Malásia-Ď. Durian				
(%) Malásia-D. Durian Serdang e Jerengau Cacho (%) Malásia-D. Durian Serdang e Jerengau Cacho (%) Malásia de Jerengau Inflorescência Serdang e Jerengau Masculina (%) Malásia (%) Africa-Costa do Marfim (%) Afric		Serdang e Jerengau	Pedúnculo	অ	0,66-0,84-0,92	\$
Serdang e Jerengau Cacho 10 a 15 0,48-0,52-0,51 NG & (%) Malásia-D. Durian Inflorescência 1,68-1,72-1,80 NG & Serdang e Jerengau Masculina 10 a 15 1,68-1,72-1,80 NG & (%) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,82-1,96-2,02-1,88-2,11-1,93-1,98 NG et (%) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,16-1,34-1,14-1,23 NG et (%) Malásia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5 3,10-2,72-2,81-2,45-2,06-3,16-3,16 NG et (%) Malásia Folfolos F17 3-4-5-6 3-7,5-8,5 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG et (%) Brasil-Tailandia Folfolos F17 3-4-5-6 3-4-5-0,15-0,15-0,15-0,15 CORRA (%) África-Costa do Marfim Folfolos F17 3-4-5-6 0,18 0,18 BACHY		Malásia-D. Durian				
(%) Malásia-D. Durian Inflorescência Serdang e Jerengau Masculina 10 a 15 1,68-1,72-1,80 NG (%) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,82-1,96-2,02-1,88-2,11-1,93-1,98 NG (%) Malásia Ráquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,16-1,34-1,14-1,23 NG (%) Malásia Flocha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,16-1,34-1,14-1,23 NG (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG (%) Brasil-Tailândia Folfolos F17 3-4-5-6 0,18 0,15-0,15-0,15-0,15 PAC (%) África-Costa do Marfim Folfolos F17 3 0,17 NG (%) Malásia Folfolos F17 3 0,17 NG (%) Malásia Folfolos F17 3 0,18 NG (%) Malásia Folfolos F17 3 0,17 NG (%) NG (%) Malásia Folfolos F17 3 0,17 NG (%) NG (%) Malásia Folfolos F17 3 0,17 NG (%) NG (%) Malásia Folfolos F17 3 0,17 NG (%) NG (%) Malásia Folfolos F17 3 0,18 NG (%) NG (%) Malásia F17 3 0,18 NG (%) NG (%) Malásia F18 NG (%) M		Serdang e Jerengau	Cacho	ಡ	0,48-0,52-0,51	రు
(%) Malásia Tolfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,68-1,72-1,80 NG (%) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,82-1,96-2,02-1,88-2,11-1,93-1,98 NG (%) Malásia Flocha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,16-1,34-1,14-1,23 NG (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 3,10-2,72-2,81-2,45-2,06-3,16-3,16 NG (%) Brasil-Tailândia Folfolos F17 3-4-5-6 0,15-0,15-0,15-0,15 COR (%) África-Costa do Marfim Folfolos F17 3-4-5-6 0,18 0,15-0,15-0,15-0,15 BAG (%) África-Costa do Marfim Folfolos F17 3-4-5-6 0,17 0,18 BAG (%) África-Costa do Marfim Folfolos F17 3-4-5-6 BAG 0,18 0,18 BAG (%) África-Costa do Marfim Folfolos F17 3-4-5-6 BAG 0,18 0,18 0,17 0,17 0,17 0,17 0,18 0,18 0,18 0,18 0,18 0,17 0,17 0,18 0,17 0,17 0,17 0,17 0		Malásia-D. Durian	Inflorescēncia			
(%) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,82-1,96-2,02-1,88-2,11-1,93-1,98 NG (%) Malásia Ráquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,42-0,38-0,35-0,33-0,32-0,38-0,36 NG (%) Malásia Flecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,16-1,34-1,14-1,23 NG (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 3,10-2,72-2,81-2,45-2,06-3,16-3,16 NG (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG (%) Malásia Folfolos F17 3-4-5-6 0,18 NG (%) Africa-Costa do Marfim Folfolos F17 3-4-5-6 0,18 NG (%) Africa-Costa do Marfim Folfolos F17 3 NG (%) María Marfim Folfolos F17 3 NG (%) NG (%) María Marfim Folfolos F17 3 NG (%) NG (%) María Marfim Folfolos F17 3 NG (%) NG (%) María Marfim Folfolos F17 3 NG (%) NG (%) María Marfim Folfolos F17 3 NG (%) NG		Serdang e Jerengau	Masculina	10 a 15	1,68-1,72-1,80	
(%) Malásia Ráquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,42-0,38-0,32-0,38-0,36 NG et al. (%) Malásia Flocha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,16-1,34-1,14-1,23 NG et al. (%) Malásia Retipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 3,10-2,72-2,81-2,45-2,06-3,16-3,16 NG et al. (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG et al. (%) Brasil-Tailândia Folfolos F17 3-4-5-6 0,18 0,18 BACHY (196. (%) África-Costa do Marfim Folfolos F17 3 - 4-5-6 0,18 0,18 BACHY (196. (%) Africa-Costa do Marfim Folfolos F17 3 - 4-5-6 0,18 0,18 BACHY (196.		Malāsia	Foliolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5	1,82-1,96-2,02-1,88-2,11-1,93-1,98	NG et al. (1968a)
(%) Malásia Flocha 2,4-3,3-4,3-5,3-6,3-7,5-8,5 1,42-1,04-1,48-1,16-1,34-1,14-1,23 NG et al. (%) Malásia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5 3,10-2,72-2,81-2,45-2,06-3,16-3,16 NG et al. (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG et al. (%) Brasil-Tailândia Folfolos F17 3-4-5-6 0,15-0,15-0,15-0,15-0,15-0,15 BACHY (196. (%) África-Costa do Marfim Folfolos F17 3		Malāsia	Rāquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,42-0,38-0,35-0,33-0,32-0,38-0,36	et al.
(%) Malásia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5 3,10-2,72-2,81-2,45-2,06-3,16-3,16 NG et al. (%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG et al. (%) Brasil-Tailândia Folfolos F17 3-4-5-6 0,15-0,15-0,15-0,15 BACHY (196. (%) África-Costa do Marfim Folfolos F17 3 - 4-5-6 0,18 (%) África-Costa do Marfim Folfolos F17 3 - 4-5-6 0,18 (%) Africa-Costa do Marfim Folfolos F17 3 - 4-5-6 0,18 (%) Africa-Costa do Marfim Folfolos F17 3 - 4-5-6 0,17 (%) África-Costa do Marfim Folfolos F17 3 0,17 (%) Africa-Costa do Marfim Folfolos F17 3 0,17		Malásia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5	1,42-1,04-1,48-1,16-1,34-1,14-1,23	et al.
(%) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG et al. (%) Brasil-Tailândia Folfolos F17 3-4-5-6 0,15-0,15-0,15-0,15 0,18 (%) África-Costa do Marfim Folfolos F17 3 - 4-5-6 0,18 (%) África-Costa do Marfim Folfolos F17 3 - 4-5-6 0,18 (%) Africa-Costa do Marfim Folfolos F17 3 0,17 (%) Folfolos F17 3 0,95-0,82-0,68-0,74-0,57-0,71-0,75 NG et al.		Malāsia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5	3,10-2,72-2,81-2,45-2,06-3,16-3,16	et al.
(%) Brasil-Tailândia Folfolos F17 3-4-5-6 0,15-0,15-0,15-0,15 (%) África-Costa do Marfim Folfolos F9 3 0,18 (%) África-Costa do Marfim Folfolos F17 3 0,17		Malāsia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,95-0,82-0,68-0,74-0,57-0,71-0,75	et al.
(%) Africa-Costa do Marfim Folfolos F9 3 0,18 (%) Africa-Costa do Marfim Folfolos F17 3 0,17		Brasil-Tailândia	Foliolos F17	3-4-5-6	0,15-0,15-0,15-0,15	CORRADO (1992)
(%) África-Costa do Marfim Folfolos F17 3 ACHY	P (%)	Africa-Costa do Marfim	Foliolos F9	3	0,18	BACHY (1964)
	P (%)	África-Costa do Marfim	Foliolos F17	3	0,17	

Tabela 2 - Continuação

P (%) Africa/La M P (%) Africa/Pobé P (%) Africa/La D P (%) Malásla-D. I Serdang e J P (%) Malásla-D. I Serdang e J Serdang e J Serdang e J	Africa/La Mé	Foliolos F17			ŀ
\$\times\$\times\$\$\times	Pohe		3-10	0,16-0,17	BACHY (1965)
\$\times \times \	2001/20	Foliolos F17	3-10	0,15-0,11	BACHY (1965)
⊗ ⊗ ⊗	Africa/La Dibamba	Folfolos F17	3-10	0,16-0,18	BACHY (1965)
(%)	Malasia-D. Durian				
(%)	Serdang e Jerengau	Polpa	10 a 15	0,05-0,07-0,04	NG & THAMBOO (1967)
(6)	Malasia-D. Durian				
(6)	Serdang e Jerengau	Casca	10 a 15	0,008-0,006-0,006	NG & THAMBOO (1967)
(0)	Malasia-D. Durían				
Serda	Serdang e Jerengau	Amendoa	10 a 15	C,28-0,27-0,33	NG & THAMBOO (1967)
P (%) Malās	Malasia-D. Durfan				
Serde	Serdang e Jerengau	Espigueta	10 a 15	0,11-0,11-0,12	NG & THAMBOO (1967)
P (%) Malas	Malasia-D. Durian				
Serds	Serdang e Jerengau	Pedunculo	10 a 15	0,12-0,14-0,11	NG & THAMBOO (1967)
P (%) Malás	Malásia-D. Durian				
Serda	Serdang e Jerengau	Cacho	10 a 15	70,0-0,0-0,0	NG & THAMBOO (1967)
P (%) Malás	Malásia-D. Durian	Inflorescência			
Serda	Serdang e Jerengau	masculina	10 a 15	0,30-0,34-0,32	NG & THAMBOO (1967)
P (%) Malāsia	ita	Foliolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,11-0,12-0,13-0,12-0,12-0,12-0,11	NG et al. (1968a)
P (%) Malasia ¹	ital	Rāquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,06-0,06-0,07-0,08-0,06-0,06-0,06	NG et al. (1968a)
P (%) Malāsia	ita	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,17-0,16-0,17-0,14-0,16-0,13-0,12	NG et al. (1968a)
P (%) Malāsia	ita	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,49-0,39-0,49-0,44-0,48-0,57-0,53	NG et al. (1968a)
P (%) Malasia	ila	Estipe	2,4-3,3-4,3-5,3-6,5-7,5-8,5	0,14-0,11-0,12-0,10-0,09-0,08-0,06	NG et al. (1968a)
K (%) Brasi	Brasil-Tailândia (PA)	Foliolos	3-4-5-6	1,04-1,05-0,94-1,01	CORRADO (1992)
K (%) Afric	Africa-Costa do Marfim	Foliolos F9	3	1,48	BACHY (1964)
K (%) Afric	Africa-Costa do Marfim	Foliolos F17	3	1,34	BACHY (1964)
K (%) Afric	África/La Mé	Foliolos F 17	3-10	1,23-1,09	BACHY (1965)
K (%) Afric	África/Pobé	Folfolos F17	3-10	0,91-0,81	BACHY (1965)
K (%) Afric	Africa/Dibamba	Folfolos F17	3-10	1,55-1,09	BACHY (1965)
K (%) Malāsia	ita	Foliolos F17	5-10-15-20-25-30	1,32-1,22-1,13-1,03-0,94-0,84	KNECHT et al. (1977)

Continua...

Tabela 2 - Continuação

Nucreme	Loca1	Componente	Idade (anos)	Teor	Autor(es)
K (%)	Malásia-D. Durian				
	Serdang e Jerengau	Polpa	10 a 15	0,28-0,42-0,39	NG & THAMBOO (1967)
K (%)	Malasia-D. Durian				
	Serdang e Jerengau	Casca	10 a 15	0,08-0,07-0,09	NG & THAMBOO (1967)
K (%)	Malásia-D. Durian				
	Serdang e Jerengau	Amendoa	10 a 15	0,39-0,43-0,46	NG & THAMBOO (1967)
K (%)	Malasia-D. Durian				
	Malásia e Jerengau	Espiguetas	10 a 15	2,17-1,72-2,32	NG & THAMBOO (1967)
K (%)	Malasia-D. Durian				
	Serdang e Jerengau	Pedunculo	10 a 15	6,05-4,87-6,61	NG & THAMBOO (1967)
K (%)	Malasia-D. Durian				
	Serdang e Jerengau	Cacho	10 a 15	0,60-0,67-0,67	NG & THAMBOO (1967)
K (%)	Malásia-D. Durian	Inflorescēncia			
	Serdang e Jerengau	masculina	10 a 15	2,52-1,91-2,83	NG & THAMBOO (1967)
(%)	Malâsia	Foliolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5	1,01-1,01-0,93-1,02-0,93-1,06-1,03	NG et al. (1968a)
(%)	Malasia ^l	Rāquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5	1,27-1,59-1,20-1,62-1,42-1,10-1,44	NG et al. (1968a)
(%)	Malasia	Raquis F-17	sem especificação	1,31	TEOH & CHEW (1989)
(%)	Malasia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5	2,08-1,91-1,86-1,79-1,74-1,63-1,76	NG et al. (1968a)
(%)	Malásia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5	3,43-3,35-3,59-3,74-3,63-3,55-3,88	NG et al. (1968a)
(%)	Malásia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5	2,24-2,54-2,66-2,75-1,99-2,02-1,69	NG et al. (1968a)
Ca (%)	África-Costa do Margim	Folfolos F9	8	0,62	BACHY (1964)
		Foliolos F17	3	0,72	BACHY (1964)
Ca (%)	Africa-La Mē	Foliolos F17	3-10	0,82-0,78	BACHY (1965)
Ca (%)	Africa-Pobe	Foliolos F17	3-10	0,99-0,88	BACHY (1965)
Ca (%)	Africa-La Dibamba	Foliolos F17	3-10	0,64-0,93	BACHY (1965)
Ca (%)	Malásia	Foliolos F17	5-10-15-20-25-30	0,52-0,57-0,63-0,68-0,74-0,79	KNECHT et al. (1977)
Ca (%)	Brasil-Tailāndia (PA)	Foliolos F17	3-4-5-6	1,19-1,12-0,99-1,01	CORRADO (1992)
Ca (%)	Malasia-D. Durian				
	Serdang e Jerengau	Polpa	10 a 15	0,07-0,19-0,14	NG & THAMBOO (1967)

阿阿阿阿阿阿阿

理理

回回

質質

麗 選

随阿

圆属属

E E E E E E E

三

()

Tabela 2 - Continuação

יים כד דכווכר	Local	Componente	Idade (anos)	Teor	Autor(es)
Ca (%)	Malásia-D. Durian				
	Serdang e Jerengau	Casca	10 a 15	0,02-0,02-0,01	NG & THAMBOO (1967
Ca (%)	Malásia-D. Durian				
	Serdang e Jerengau	Amendoa	10 a 15	0,09-0,08-0,10	NG & THAMBOO (1967)
Ca (%)	Malasia-D. Durian				
	Serdang e Jerengau	Espigueta	10 a 15	0,27-0,48-0,46	NG & THAMBOO (1967)
Ca (%)	Malásia-D. Durian				
	Serdang e Jerengau	Pedúnculo	10 a 15	0,24-0,74-0,43	NG & THAMBOO (1967)
Ca (%)	Malásia-D. Durian				
	Serdang e Jerengau	Cacho	10 a 15	0,08-0,20-0,15	NG & THAMBOO (1967)
Ca (%)	Malasia-D. Durian	Inflorescēncia			
	Serdang e Jerengau	maculina	10 a 15	0,62-1,14-0,86	NG & THAMBOO (1967)
Ca (%)	Malásia	Folfolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,46-0,41-0,43-0,42-0,39-0,26-0,27	NG et al. (1968a)
Ca (%)	Malasia ^l	Ráquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,20-0,19-0,22-0,20-0,22-0,17-0,16	NG et al. (1968a)
Ca (%)	Malásia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,28-0,24-0,26-0,17-0,24-0,18-0,15	NG et al. (1968a)
Ca (%)	Malasia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,38-0,37-0,34-0,31-0,37-0,21-0,29	NG et al. (1968a)
Ca (%)	Malāsia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,27-0,25-0,23-0,18-0,21-0,14-0,16	NG et al. (1968a)
Mg (%)	Africa-Costa do Marfim	Foliolos F9	3	0,28	BACHY (1964)
	-	Foliolos F17	3	0,29	BACHY (1964)
Mg (%)	Africa-La Mè	Foliolos F17	3-10	0,34-0,34	BACHY (1965)
Mg (%)	África-Pobé	Foliolos F17	3-10	0,39-0,39	BACHY (1965)
Mg (%)	Africa-La Dibamba	Folfolos F17	3-10	0,27-0,23	BACHY (1965)
Mg (%)	Brasil-Tailândia (PA)	Foliolos F 17	3-4-5-6	0,30-0,26-0,28-0,29	CORRADO (1992)
Mg (%)	Malasia-D. Durian				
	Serdang e Jerengau	Polpa	10 a 15	0,13-0,19-0,11	NG & THAMBOO (1967)
Mg (%)	Malasia-D. Durian				
	Serdang e Jerengau	Casca	10 a 15	0,02-0,02-0,01	NG & THAMBOO (1967)
Mg (%)	Malāsia-D. Durian				
	Serdang e Jerengau	Amendoa	10 a 15	0,16-0,14-0,15	NG & THAMBOO (1967)

Tabela 2 - Continuação

Nutriente	Local	Componente	Idade (anos)	Leor	Autor(es)
Mg (%)	Malásia-D. Durian				
	Serdang e Jerengau	Espigueta	10 a 15	0,34-0,29-0,27	NG & THAMBOO (1967)
Mg (%)	Malásia-Ď. Durian				
	Serdang e Jerengau	Pedúnculo	10 a 15	0,30-0,31-0,17	NG & THAMBOO (1967)
Mg (%)	Malásia-D. Durian				
	Serdang e Jerengau	Cacho	10 a 15	0,15-0,14-0,11	NG & THAMBOO (1967)
Mg (%)	Malásia-D. Durian	Inflorescência			
	Serdang e Jerengau	masculina	10 a 15	0,82-0,25-0,59	NG & THAMBOO (1967)
Mg (%)	Malásia	Foliolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,26-0,31-0,24-0,23-0,25-0,17-0,22	NG et al. (1968a)
Mg (%)	Malásia	Ráquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,18-0,21-0,22-0,16-0,22-0,16-0,15	NG et al. (1968a)
Mg (%)	Malásia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,23-0,35-0,28-0,18-0,29-0,18-0,19	NG et al. (1968a)
Mg (%)	Malasia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,80-1,00-0,81-0,76-1,12-0,88-0,91	NG et al. (1968a)
Mg (%)	Malásia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,22-0,24-0,17-0,15-0,20-0,15-0,17	NG et al. (1968a)
S (%)	Brasil-Tailândia (PA)	Foliolos F17	3-5	0,19-0,19	CORRADO (1992)
	N C C C C C C C C C C C C C C C C C C C	Fo11010s	2.4-3.3-4.3-5.3-6.3-7.5-8.5	0.15-0.15-0.20-0.18-0.20-0.19-0.20	NG et al. (1968a)
	halasta	TOTTOTOS	21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,10,011,001,001,001,001,001,001,001,00	7 7 7
S (%)	Malasia	Raquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,1/-0,1/-0,21-0,21-0,28-0,21-0,24	aI.
8 (%)	Malásia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,12-0,12-0,15-0,10-0,22-0,13-0,24	NG et al. (1968a)
S (%)	Malāsia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,32-0,33-0,32-0,43-0,35-0,41-0,42	NG et al. (1968a)
(%) S	Malásia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5	0,19-0,28-0,28-0,31-0,34-0,18-0,21	NG et al. (1968a)
C1 (%)	Colômbia-San Albert	Folfolos F17	2-9	0,58-0,53	OLLAGNIER & OCHS (1971)
C1 (%)	Africa-Costa do Marfim	Foliolos F17	5	0,65	OLLAGNIER & OCHS (1971)
C1 (%)	Africa-Malta	Foliolos F17	4-5-8-12	0,67-0,65-0,64-0,76	OLLAGNIER & OCHS (1971)
C1 (%)	Brasil-Belém	Foliolos F17	2	0,35	OLLAGNIER & OCHS (1971)
(%)	Peru-Rio Tocache	Foliolos F17	2	0,54	OLLAGNIER & OCHS (1971)
C1 (%)	Brasil-Tailândia (PA)	Foliolos F17	2-4-5-6	0,59-0,60-0,56-0,62	CORRADO (1992)
C1 (%)	Brasil-Tefé (AM)	Folfolos F17	2-3-4	0,76-0,43-0,42	OCHS (1989)
Cu (ppm)	Malásia-D. Durlan	Polpa	10 a 15	7,9	NG & THAMBOO (1967)
Cu (ppm)	Malásia-D. Durtan	Casca	10 a 15	5,1	NG & THAMBOO (1967)

Tabela 2 - Continuação

Nutriente	Local	Componente	Idade (anos)	Leor	Auror(es)
Cu (ppm)	Malasia-D. Durian	Amendoa	10 a 15	10,3	NG & THAMBOO (1967)
Cu (ppm)	Malasta-D. Durlan	Espigueta	10 a 15	12,2	NG & THAMBOO (1967)
Cu (ppm)	Malasia-D. Durian	Peduncu10	10 a 15	23,5	NG & THAMBOO (1967)
Cu (ppm)	Brasil-Manaus²	Foliolos F9	5	5,1	CORRADO (1992)
Cu (ppm)	Malasia	Foliolos	1,2-3,3-5,3-8,6	7,1-6,6-6,5-6,1	NG et al. (1968b)
Cu (ppm)	Malásía	Flecha	1,2-3,3-5,3-8,6	6,0-6,3-6,4-6,1	NG et al. (1968b)
(mdd) no	Malásia	Flecha	1,2-3,3-5,3-8,6	15,0-9,4-9,7-11,0	NG et al. (1968b)
Cu (ppm)	Malásia	"Cabbage"	1,2-3,3-5,3-8,6	23,0-23,0-20,5-32,8-24,0	NG et al. (1968b)
Cu (ppm)	Malāsia	Estipe	1,2-3,3-5,3-8,6	10,1-14,7-9,5-9,0	NG et al. (1968b)
B (ppm)	Malasia-D. Durlan	Polpa	10 a 15	2,8	NG & THAMBOO (1967)
B (ppm)	Malasia-D. Durian	Casca	10 a 15	1,1	NG & THAMBOO (1967)
B (ppm)	Malasta	Amendoa	10 a 15	3,1	NG & THAMBOO (1967)
B (ppm)	Malasia	Espigueta	10 a 15	12,9	NG & THAMBOO (1.967)
B (ppm)	Malasia	Pedúncu1o	10 a 15	15,0	NG & THAMBOO (1967)
B (ppm)	Malasia	Foliolos	1,2-3,3-5,3-8,6	10,7-10,5-9,3-12,1	NG et al. (1968b)
B (ppm)	Malásia	Rāquis	1,2-3,3-5,3-8,6	6,4-6,6-6,3-7,2	NG et al. (1968b)
B (ppm)	Malásia	Flecha	1,2-3,3-5,3-8,6	10-8-8-6,9	NG et al. (1968b)
B (ppm)	Malasia	Cabbage	1,2-3,3-5,3-8,6	13,8-15,4-14,7-25,1	NG et al. (1968b)
B (ppm)	Malasia	Estipe	1,2-3,3-5,3-8,6	7,2-8,9-8,1-8,2	NG et al. (1968b)
B (ppm)	Brasil-Manaus	Foliolos F9	5	29	CORRADO (1992)
B (ppm)	Brasil-Tailândia (PA)	Foliolos F9	2	37-54,9	CORRADO (1992)
B (ppm)	Brasil-Tailândia (PA)	Foliolos F17	3-4-5-6	21-19-25-24	CORRADO (1992)
Fe (ppm)	Malasia-D. Durian	Polpa	10 a 15	31,0	NG & THAMBOO (1967)
Fe (ppm)	Malasia-D. Durian	Casca	10 a 15	58,0	NG & THAMBOO (1967)
Fe (ppm)	Malasia-D. Durian	Amendoa	10 a 15	34,0	NG & THAMBOO (1967)
Fe (ppm)	Malasia-D. Durian	Espigueta	10 a 15	74,0	NG & THAMBOO (1967)
Fe (ppm)	Malásia-D. Durian	Pedúnculo	10 a 15	63,0	NG & THAMBOO (1967)
Fe (ppm)	Malásia	Foliolos	1,2-3,3-5,3-8,6	77-67-101,0-70,0	NG et al. (1968b)
Fe (ppm)	Malasia	Raquis	1,2-3,3-5,3-8,6	85,0-84,0-68,0-30,0	NG et al. (1968b)

國國

Tabela 2 - Continuação

Fe (ppm) Malásia Flecha 1,2-3,5-5,3-6,6 62,0-40,0-41,0-47,3 NG et al. (1968) Fe (ppm) Malásia "Cabbage" 1,2-3,5-5,3-6,6 62,0-40,0-41,0-47,3 NG et al. (1968) Fe (ppm) Malásia-D. Durian Polpa 1,0-3,5-5,3-6,6 67,0-38,0-239,0-243,0 NG et al. (1968) Kn (ppm) Malásia-D. Durian Polpa 10 a 15 15,0-38,0-230,0-243,0 NG et al. (1968) Mn (ppm) Malásia-D. Durian Pedúnculo 10 a 15 13,5 NG é THAMBOO (1967) Mn (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,0 NG é THAMBOO (1967) Mn (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,0 NG é THAMBOO (1967) Mn (ppm) Malásia-D. Durian Pedúnculo 1,2-3,5-3,4-6 120,0-146,0-113,0-73,0 NG é TIAMBOO (1967) Mn (ppm) Malásia-D. Durian Pedúnculo 1,2-3,5-3,4-6 120,0-146,0-113,0-73,0 NG é al. (1968) Mn (ppm) Malásia-D. Durian Pedúnculo 1,2-3,5-3,4-6 120,0-146,0-113,0-13,0 NG é TIAMBOO (1967) <th< th=""><th>Nutriente</th><th>Local</th><th>Componente</th><th>Idade (anos)</th><th>Teor</th><th>Autor(es)</th></th<>	Nutriente	Local	Componente	Idade (anos)	Teor	Autor(es)
(ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 67,0-54,0-91,0-67,0 (ppm) Malásia Estípe 1,2-3,3-5,3-8,6 226,0-398,0-239,0-243,0 (ppm) Malásia-D. Durian Polpa 10 a 15 4 (ppm) Malásia-D. Durian Pedimento 10 a 15 13,5 (ppm) Malásia-D. Durian Pedimento 10 a 15 29,0 (ppm) Malásia-D. Durian Pedimento 10 a 15 20,0 (ppm) Malásia Pedimento 10 a 15 20,0 (ppm) Malásia Pedimento 10 a 15 20,0 (ppm) Malásia Pedimento 10 a 15 25,0-116,0-13,0-13,0-13,0-13,0-13,0-13,0-13,0-13	Fe (ppm)	Malásia	Flecha	1,2-3,3-5,3-8,6	62,0-40,0-41,0-47,3	
(ppm) Malásia-D. Durian Estipe 1,2-3,3-5,3-8,6 226,0-398,0-239,0-243,0 (ppm) Malásia-D. Durian Polpa 10 a 15 4 (ppm) Malásia-D. Durian Polpa 10 a 15 13,5 (ppm) Malásia-D. Durian Podúnculo 10 a 15 70,0 (ppm) Malásia-D. Durian Pedúnculo 10 a 15 29,0 (ppm) Malásia-D. Durian Pedúnculo 10 a 15 29,0 (ppm) Malásia-D. Durian Pedúnculo 10 a 15 29,0 (ppm) Malásia-D. Durian Pedúnculo 10 a 15 25,1-16,0-116,0 (ppm) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6 43,0-146,0-116,0 (ppm) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 (ppm) Malásia-D. Durian Polúnculo 10 a 15 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 (ppm) Malásia-D. Durian Pedúnculo 10 a 15 1,2-3,3-5,3-8,6 1,2-3,3-5,3-8,6 1,2-3,3-5,3-8,6 (ppm) Ma	Fe (ppm)	Malásia	"Cabbage"	1,2-3,3-5,3-8,6	67,0-54,0-91,0-87,0	NG et al. (1968b)
(ppm) Malásta-D. Durian Polpa 10 a 15 4 (ppm) Malásta-D. Durian Casca 10 a 15 13,5 (ppm) Malásta-D. Durian Casca 10 a 15 10,0 (ppm) Malásta-D. Durian Espigueta 10 a 15 70,0 (ppm) Malásta-D. Durian Pedúnculo 10 a 15 29,0 (ppm) Malásta Folfolos 1,2-3,3-5,3-8,6 163,0-352,0-540,0-300,0 (ppm) Malásta Faccha 1,2-3,3-5,3-8,6 120,0-118,0-113,0-73,0 (ppm) Malásta Frecha 1,2-3,3-5,3-8,6 120,0-118,0-116,0 (ppm) Malásta Frecha 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 (ppm) Malásta-D. Durian Polpa 10 a 15 1,9 (ppm) Malásta-D. Durian Folfolos 10 a 15 46,0 (ppm) Malásta-D. Durian Folfolos 10 a 15 46,0 (ppm) Malásta-D. Durian Folfolos 10 a 15 46,0 (ppm) Malásta-D. D	Fe (ppm)	Malāsia	Estipe	1,2-3,3-5,3-8,6	226,0-398,0-239,0-243,0	NG et al. (1968b)
(ppm) Malásta-D. Durian Casca 10 a 15 13,5 (ppm) Malásta-D. Durian Améndoa 10 a 15 158,0 (ppm) Malásta-D. Durian Régueta 10 a 15 70,0 (ppm) Malásta-D. Durian Pedúnculo 10 a 15 29,0 (ppm) Malásta Folfolos 1,2-3,3-5,3-8,6 30,0-81,0-113,0-73,0 (ppm) Malásta Folfolos 1,2-3,3-5,3-8,6 30,0-81,0-114,0-73,0 (ppm) Malásta "Cabbage" 1,2-3,3-5,3-8,6 43,0-146,0-116,0 (ppm) Malásta Folpa 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 (ppm) Malásta Polpa 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 (ppm) Malásta-D. Durian Polpa 10 a 15 17,9 (ppm) Malásta-D. Durian Pedúnculo 10 a 15 20,5 (ppm) Malásta-D. Durian Pedúnculo 10 a 15 20,6 (ppm) Malásta-D. Durian Pedúnculo 10 a 15 20,6 (ppm)	Mn (ppm)	Malásia-D. Durian	Polpa	10 م	~	VENOTA COMMITTEE DE LIN
(ppm) Malásia-D. Durian Amêndoa 10 a 15 158,0 (ppm) Malásia-D. Durian Espigueta 10 a 15 70,0 (ppm) Malásia-D. Durian Pedúnculo 10 a 15 29,0 (ppm) Malásia-D. Durian Folfolos 1,2-3,3-5,3-8,6 163,0-352,0-540,0-300,0 (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 120,0-146,0-113,0-73,0 (ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 120,0-146,0-116,0 (ppm) Malásia L'2-3,3-5,3-8,6 25,0-116,0-96,0-16,0-116,0 (ppm) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 (ppm) Malásia-D. Durian Pedúnculo 10 a 15 17,9 (ppm) Malásia-D. Durian Pedúnculo 10 a 15 46,0 (ppm) Malásia Pedúnculo 10 a 15 20,5 (ppm) Malásia Pedúnculo 10 a 15 20,5 (ppm) Malásia Pedúnculo 10 a 15 20,5 (ppm) Malás	Mn (ppm)	Malásia-D. Durian	Casca	10 a 15	13.5	NG & THAMBOO (1967)
(ppm) Malásia-D. Durian Espigueta 10 a 15 70,0 (ppm) Malásia-D. Durian Pedúnculo 10 a 15 29,0 (ppm) Malásia-D. Durian Folfolos 1,2-3,3-5,3-8,6 163,0-352,0-540,0-300,0 (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 120,0-148,0-116,0 (ppm) Malásia D. Durian Flecha 1,2-3,3-5,3-8,6 43,0-146,0-115,0 (ppm) Malásia-D. Durian Polpa 10 a 15 1,9 (ppm) Malásia-D. Durian Améndoa 10 a 15 1,9 (ppm) Malásia-D. Durian Améndoa 10 a 15 46,0 (ppm) Malásia-D. Durian Améndoa 10 a 15 20,5 (ppm) Malásia-D. Durian Folfolos 1,2-3,3-5,3-8,6 5,0-116,0-96,0-69,0 (ppm) Malásia-D. Durian Réquis 10 a 15 20,5 (ppm) Malásia-D. Durian Folfolos 1,2-3,3-5,3-8,6 5,0-116,0-96,0-69,0 (ppm) Malásia-D. Durian Folfolos 1,2-3,3-5,3-8,6 6,8-7 8-7,7-7,	Mn (ppm)	Malásia-D. Durian	Amendoa	ต	158,0	NG & THAMBOO (1967)
(ppm) Malásia-D. Durian Pedúnculo 10 a 15 29,0 NG et (ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 163,0-352,0-540,0-300,0 NG et (ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 30,0-81,0-113,0-73,0 NG et (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 120,0-146,0-116,0 NG et (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 25,0-116,0-96,0-157,0 NG et (ppm) Malásia Folpa 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 NG et (ppm) Malásia-D. Durian Polpa 10 a 15 1,9 NG & (ppm) Malásia-D. Durian Espígueta 10 a 15 17,9 NG & (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,5 12,7-12,2-17,3-12,0 NG & (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,5 20,5 NG & (ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 NG &		Malásia-D. Durian	Espigueta	10 a 15	70,0	NG & THAMBOO (1967)
(ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 163,0-352,0-540,0-300,0 NG (ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 30,0-81,0-113,0-73,0 NG (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 120,0-148,0-146,0-116,0 NG (ppm) Malásia Fitpe 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 NG (ppm) Malásia-D. Durían Polpa 10 a 15 1,9 NG (ppm) Malásia-D. Durían Pedúnculo 10 a 15 1,7,9 NG (ppm) Malásia-D. Durían Fepígueta 10 a 15 1,7,9 NG (ppm) Malásia-D. Durían Pedúnculo 10 a 15 20,5 NG (ppm) Malásia-D. Durían Pedúnculo 10 a 15 20,5 NG (ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7 NG (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 229,0-38,2-45,0-153,0 NG (ppm) Malásia Folfolos		Malásia-D. Durían	Peduncu10	10 a 15	29,0	ಶ
(ppm) Malásia Ráquis 1,2-3,3-5,3-8,6 30,0-81,0-113,0-73,0 NG (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 120,0-146,0-116,0 NG (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 43,0-146,0-155,0-157,0 MG (ppm) Malásia-D. Durian Polpa 10 a 15 3,3 MG (ppm) Malásia-D. Durian Pedúnculo 10 a 15 17,9 MG (ppm) Malásia-D. Durian Pedúnculo 10 a 15 46,0 MG (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,5 17,9 MG (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,5 20,5 MG (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,5 20,5 MG (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,5 20,5 MG (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,5 20,2 20,5 (pp		Malâsia	Folfolos	1,2-3,3-5,3-8,6	163,0-352,0-540,0-300,0	NG et al. (1968b)
(ppm) Malásia Flecha 1,2-3,3-5,3-8,6 120,0-146,0-146,0-116,0 MG (ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 43,0-146,0-155,0-157,0 MG (ppm) Malásia-D. Durian Polpa 10 a 15 3,3 MG (ppm) Malásia-D. Durian Polpa 10 a 15 17,9 MG (ppm) Malásia-D. Durian Podúnculo 10 a 15 46,0 MG (ppm) Malásia-D. Durian Podúnculo 10 a 15 20,17,9 MG (ppm) Malásia-D. Durian Podúnculo 10 a 15 20,0 20,13,2,17,3-12,0 MG (ppm) Malásia-D. Durian Podúnculo 10,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 MG (ppm) Malásia-D. Durian Folíolos 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 MG (ppm) Malásia Flocha 1,2-3,3-5,3-8,6 20,0-36,0-194,0-153,0 MG (ppm) Malásia Flocha 1,2-3,3-5,3-8,6 20,0-38,2-45,0-25,4 MG (ppm)		Malásía	Ráquis	1,2-3,3-5,3-8,6	30,0-81,0-113,0-73,0	NG et al. (1968b)
(ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 43,0-146,0-155,0-157,0 MG (ppm) Malásia 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 NG (ppm) Malásia-D. Durian Polpa 10 a 15 1,9 NG (ppm) Malásia-D. Durian Amêndoa 10 a 15 17,9 NG (ppm) Malásia-D. Durian Redúnculo 10 a 15 20,5 NG (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,5 NG (ppm) Malásia Folíosa 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 NG (ppm) Malásia Réquis 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 NG (ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 NG (ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 22,0-3,6-2,4 NG (ppm) Malásia Estipe 1,2-3,3-5,3-8,6 22,0-3,6-25,4 NG (ppm) Malásia Estipe 1,2-3,3-5,3-8,6 2		Malásia	Flecha	1,2-3,3-5,3-8,6	120,0-148,0-146,0-116,0	NG et al. (1968b)
(ppm) Malāsia-D. Durian Estipe 1,2-3,3-5,3-8,6 25,0-116,0-96,0-69,0 NG (ppm) Malāsia-D. Durian Polpa 10 a 15 1,9 NG (ppm) Malāsia-D. Durian Casca 10 a 15 17,9 NG (ppm) Malāsia-D. Durian Espigueta 10 a 15 20,5 NG (ppm) Malāsia Folfolos 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 NG (ppm) Malāsia Flecha 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 NG (ppm) Malāsia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 NG (ppm) Malāsia Estipe 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 NG (ppm) Malāsia Folfolos 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 NG (ppm) Malāsia Folfolos 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 NG (ppm) Malāsia Folfolos 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 NG (ppm) Malāsia F		Malāsia	"Cabbage"	1,2-3,3-5,3-8,6	43,0-146,0-155,0-157,0	et ål.
(ppm) Malásia-D. Durian Polpa 10 a 15 3,3 NG (ppm) Malásia-D. Durian Casca 10 a 15 1,9 NG (ppm) Malásia-D. Durian Amêndoa 10 a 15 46,0 NG (ppm) Malásia-D. Durian Pedúnculo 10 a 15 20,5 NG (ppm) Malásia Folíos 1,2-3,3-5,3-8,6 12,7-12,2-17,3-12,0 NG (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 37,7-30,0-23,6-22,4 NG (ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 NG (ppm) Malásia Estipe 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 NG (ppm) Malásia Folíolos 5 16,3 COR (ppm) Brasil-Manaus² Folíolos 5 16,3 COR	Mn (ppm)	Malásia	Estipe	1,2-3,3-5,3-8,6	25,0-116,0-96,0-69,0	et al.
(ppm) Malâsia-D. Durian Polpa 10 a 15 3,3 NG (ppm) Malâsia-D. Durian Casca 10 a 15 17,9 NG (ppm) Malâsia-D. Durian Amêndoa 10 a 15 46,0 NG (ppm) Malâsia-D. Durian Pedûnculo 10 a 15 20,5 NG (ppm) Malâsia Folfolos 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 NG (ppm) Malâsia Flecha 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 NG (ppm) Malâsia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 NG (ppm) Malâsia Estipe 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 NG (ppm) Malâsia Folfolos 5 16,3 29,0-38,2-45,0-35,4 NG (ppm) Malâsia Folfolos 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 NG (ppm) Malâsia Folfolos 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 NG (ppm) Brasil-Manaus² Folfolos	,					
(ppm) Malásia-D. Durian Casca 10 a 15 1,9 (ppm) Malásia-D. Durian Amêndoa 10 a 15 46,0 (ppm) Malásia-D. Durian Espigueta 10 a 15 20,5 (ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 (ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malásia 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malásia 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 (ppm) Brasil-Manaus² Folfolos 5	Zu (bbm)	Malasia-D. Durian	Polpa		3,3	NG & THAMBOO (1967)
(ppm) Malásia-D. Durian Amêndoa 10 a 15 17,9 (ppm) Malasia-D. Durian Espigueta 10 a 15 46,0 (ppm) Malásia Pedűnculo 10 a 15 20,5 (ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 6,8-7,8-7,7-7,6 (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 37,7-30,0-23,6-22,4 (ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malásia Estipe 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 (ppm) Brasil-Manaus² Folfolos 5 16,3		Malasia-D. Durian	Casca	10 a 15	1,9	NG & THAMBOO (1967)
(ppm) Malaŝia-D. Durian Espigueta 10 a 15 46,0 (ppm) Malasia Pedúnculo 10 a 15 20,5 (ppm) Malasia Folfolos 1,2-3,3-5,3-8,6 12,7-12,2-17,3-12,0 (ppm) Malasia Flecha 1,2-3,3-5,3-8,6 5,8-7,7-7,6 (ppm) Malasia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malasia Estipe 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 (ppm) Brasil-Manaus² Folfolos 5		Malasia-D. Durian	Amendoa	10 a 15	17,9	NG & THAMBOO (1967)
(ppm) Malásia Pedűnculo 10 a 15 20,5 (ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 6,8-7,7-7,6 (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 37,7-30,0-23,6-22,4 (ppm) Malásia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malásia Estipe 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 (ppm) Brasil-Manaus² Folfolos 5		Malasia-D. Durian	Espigueta	10 a 15	0,94	NG & THAMBOO (1967)
(ppm) Malásia Folfolos 1,2-3,3-5,3-8,6 12,7-12,2-17,3-12,0 (ppm) Malásia Ráquis 12,-3,3-5,3-8,6 6,8-7,8-7,7-7,6 (ppm) Malásia Flecha 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malásia 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malásia 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 (ppm) Brasil-Manaus² Folfolos 5		Malasia-D. Durian	Pedűncu1o	10 a 15	20,5	NG & THAMBOO (1967)
(ppm) Malásta Ráquis 12,-3,3-5,3-8,6 6,8-7,7-7,6 (ppm) Malásta 1,2-3,3-5,3-8,6 37,7-30,0-23,6-22,4 (ppm) Malásta "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malásta 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 (ppm) Brasil-Manaus² Folfolos 5		Malāsia	Foliolos	1,2-3,3-5,3-8,6	12,7-12,2-17,3-12,0	NG et al. (1968b)
(ppm) Malâsia Flecha 1,2-3,3-5,3-8,6 37,7-30,0-23,6-22,4 (ppm) Malâsia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malâsia Estipe 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 (ppm) Brasil-Manaus² Folfolos 5 16,3		Malāsia	Rāquis	12,-3,3-5,3-8,6	6,8-7,8-7,7-7,6	NG et al. (1968b)
(ppm) Malasia "Cabbage" 1,2-3,3-5,3-8,6 214,0-106,0-194,0-153,0 (ppm) Malasia Estipe 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 (ppm) Brasil-Manaus² Folfolos 5 16,3		Malásia	Flecha	1,2-3,3-5,3-8,6	37,7-30,0-23,6-22,4	NG et al. (1968b)
(ppm) Malásia Estipe 1,2-3,3-5,3-8,6 29,0-38,2-45,0-35,4 (ppm) Brasil-Manaus² Foliolos 5		Malásia	"Cabbage"	1,2-3,3-5,3-8,6	214,0-106,0-194,0-153,0	NG et al. (1968b)
(ppm) Brasil-Manaus ² Foliolos 5 16,3		Malāsia	Estipe	1,2-3,3-5,3-8,6	29,0-38,2-45,0-35,4	NG et al. (1968b)
		Brasil-Manaus²	Foliolos	5	16,3	CORRADO (1992)

^{1 -} Incluindo o pecíolo

^{2 -} Com aplicação de Zincop 101 (10% Cu, 10% Zn e 2% B)

Nas condições da Nigéria, TINKER & SMILDE (1963), encontraram pouca variação na concentração de nitrogênio e fósforo com a idade; redução de potássio e aumento nos teores de cálcio e magnésio, ao pesquisarem a extração de nutrientes em diferentes componentes e idades de dendezeiros.

A pesquisa mais completa até o presente momento sobre extração de nutrientes em dendezeiros, foi realizada por NG et al. (1968a), na Malásia. Os principais resultados obtidos com respeito às concentrações dos nutrientes foram: a) a copa apresentou uma concentração mais elevada de nitrogênio do que o tronco; na copa a ordem decrescente dos teores de nitrogênio foi ponto de crescimento ("cabbage") > folíolos > flechas > ráquis; todos os órgãos da planta mostraram uma queda brusca nas concentrações nitrogênio com a idade, sendo esse declínio mais suave na parte aérea; b) as concentrações de potássio foram geralmente mais altas no tronco do que na parte aérea; a ordem na copa obedeceu a sequência "cabbage" > flechas > ráquis > folíolos; os teores de potássio foram mais variáveis do que os de nitrogênio e a partir dos 50 meses reduziram no tronco; c) dentre os macronutrientes as concentrações de fósforo foram as mais baixas, e novamente como ocorreu com o nitrogênio e potássio, o "cabbage" > flechas > folíolos > ráquis; houve uma diminuição nas concentrações de fósforo no tronco com a idade, mas esta tendência não ficou muito evidente para

THE PERM

1

1

folíolos e ráquis; o pico da concentração ocorreu aos 115 meses para a copa e tronco, coincidindo com la do tronco para o potássio: o teor de fósforo no "cabbage" aumentou com a idade fato também observado para o potássio, e de modo geral as concentrações menos variáveis do foram gue nitrogênio e potássio; d) as concentrações média de magnésio foram menores do que as de nitrogênio e potássio, o "cabbage" apresentou novamente maior concentração de magnésio; e) a concentração de cálcio no "cabbage" se comportou de diferente em relação demais nutrientes, não 205 consideravelmente mais elevada em relação aos demais órgãos, exceto para as raízes; na parte aérea as concentrações ráquis e nas flechas foram menores do que as do "cabbage" e foliolos: f) o "cabbage" foi rico em enxofre mais do que os demais nutrientes, com exceção do cálcio.

No que diz respeito aos micronutrientes, os principais resultados alcançados por NG et al. (1968b) foram:

a) as concentrações de boro na parte aérea foram semelhantes às do tronco; na copa os teores mais altos se manifestaram no "cabbage" e os menores no ráquis; houve uma tendência na diminuição da concentração de boro no tronco com a idade, porém na copa isso não ocorreu; b) os teores de cobre se manifestaram no nível dos de boro, exceto para o "cabagge"; na copa, a maior concentração foi no "cabbage"; em termos globais não foi distinguida uma tendência na redução dos teores de cobre com a idade das palmeiras; c) as concen-

trações de zinco se apresentaram mais altas do que as de boro e cobre, exceto no ráquis; ao contrário do boro e cobre, os teores de zinco foram maiores no tronco do que na parte aérea, cuja ordem foi "cabbage" > flechas > folíolos > ráquis; somente as flechas manifestaram uma tendência em reduzir os teores de zinco com a idade; d) as concentrações de manganês foram mais altas na copa do que no tronco, sendo nos folíolos mais elevada; os teores de manganês nas palmeiras mais jovens em geral se mostram mais baixos, mas não ficou claramente demonstrada a tendência na redução dos teores com a idade; e) a concentração de ferro no tronco sobrepujou a do manganês, mas na parte aérea foi baixa; a ordem na copa foi folíolos > "cabbage" > ráquis/flecha; ráquis e parte aérea mostraram uma redução nos teores com a idade das palmas.

A concentração de nutrientes nos componentes dos cachos em dendezeiros de 10 a 15 anos de idade, foi pesquisado por NG & THAMBOO (1967), em três localidades da Malásia. Os principais resultados obtidos com relação aos teores dos nutrientes foram: a) a concentração de nitrogênio foi maior na amêndoa e menor na casca; na polpa o teor de nitrogênio foi cerca de 1/3 da amêndoa, enquanto na espigueta e pedúnculo cerca de 2/3 da amêndoa; a média da concentração de nitrogênio indicou que a variação é dependente do componente do cacho e local; b) a sequência na concentração de fosforo foi: amêndoa > pedúnculo/espigueta > polpa >

1

M

casca; as concentrações foram baixas quando comparadas com as de nitrogênio; c) a ordem decrescente na concentração potássio foi: pedúnculo > espigueta > amêndoa > polpa > casca; os teores de potássio foram os mais elevados dentre todos os nutrientes; d) as maiores concentrações de magnésio foram na espigueta e pedúnculo; concentração na polpa amêndoa foram aproximadamente metade do pedúnculo espigueta; a casca foi muito pobre em magnésio; e) teores de cálcio na polpa e casca foram próximos aos valores de magnésio, porém as concentrações na espigueta e pedúnculo foram mais elevadas do que magnésio; as de concentrações de cálcio em Serdang, foram devidas aplicações de calcário dolomítico e fosfato natural.

Com relação aos micronutrientes, os principais resultados obtidos por NG & THAMBOO (1967), referentes à concentração foram: a) a concentração de boro nos componentes do cacho variou de 1 ppm na casca para cerca de 16 ppm no pedúnculo; os teores nos componentes dos frutos (polpa, casca e amêndoa) não excedeu a 4 ppm; a sequência decrescente foi: pedúnculo > espigueta > amêndoa > polpa > casca; b) os resultados médios da concentração de cobre foram de 5-24 ppm; a sequência da concentração foi a mesma do boro; c) os maiores teores de ferro foram encontrados na espigueta e pedúnculo; a faixa de concentração de ferro foi estreita quando comparada à de manganês; d) a faixa de concentração de manganês foi ampla, variando de 4 ppm na polpa a 158 ppm na

amêndoa; a sequência decrescente na concentração de manganês foi: amêndoa > espigueta = pedúnculo > casca > polpa; e) a amplitude da concentração de zinco foi maior do que _a de cobre, variando de 2 ppm na casca a 46 ppm na espigueta. No mostraram altas concentrações os resultados geral, encontradas na espigueta, pedúnculo e amêndoa, porém no caso manganês. a amêndoa foi mais rica do que os componentes.

2.3. Acúmulo dos nutrientes

O acúmulo total de nutrientes em palmeiras de várias idades foi estudado por TINKER & SMILDE (1963), na Nigéria, sendo que os principais resultados obtidos foram: a) embora a extração de fósforo tenha sido muito menor do que a de potássio, a proporção de fósforo transportada para cachos foi grande; b) a extração de nitrogênio seguiu curso semelhante ao do fósforo, porém nos cachos foi extraído menos nítrogênio; c) grandes quantidades de potássio são transportadas para os cachos, porém a acumulação deste foi lenta, sugerindo que nos últimos anos elemento palmeiras estavam utilizando as reservas do tronco; c) o magnésio e o cálcio se acumularam mais rapidamente últimos anos, sendo que nos cachos apresentaram baixo conteúdo.

A curva do conteúdo dos macronutrientes encontrada por NG et al. (1968a), foi semelhante à da matéria seca. Até o sexto ano, a copa apresentou maior acúmulo de nitrogênio, entretanto após esta idade, houve predomínio do tronco. As curvas de acúmulo de potássio, fósforo, magnésio, cálcio e enxofre foram semelhantes à do nitrogênio, entretanto variaram quando o tronco assumiu a posição dominante em cada nutriente, sendo: N - 5,8 anos, P - 2,8 anos, K - 2,4 anos, Ca - 5 anos, Mg - 5,8 anos e S - 3 anos. Em termos absolutos a ordem de grandeza obtida por NG et al. (1968a), foi: K > N > S > Ca/Mg > P.

NG et al. (1968b), verificaram que o acúmulo de boro, cobre e ferro aumentou com a idade das palmeiras, mas para o zinco e manganês esse aumento só foi observado até 104 meses. O acúmulo no tronco mostrou um incremento consistente com a idade, mas no caso dos foliolos e ráquis, as estimativas para as palmas adultas foram menos estáveis e podem ser resumida como segue:

- a) Boro as mudanças no conteúdo dos foliolos e ráquis não foram apreciáveis:
- b) Cobre leve aumento nos valores do conteúdo dos folíolos, porém as mudanças no ráquis não foram evidentes;
- c) Zinco uma diminuição nos valores dos foliolos e ráquis:
- d) Manganês acúmulo variável nos folíolos e ráquis;

e) Ferro - aumento nos folíolos e ráquis.

Uma comparação entre os acúmulos de nutrientes em dendezeiros de 7, 10 e 14 anos de idade da Malásia e Nigéria, foi realizada por NG et al. (1968a), mostrando que o conteúdo de nutrientes foi bem maior na Malásia, principalmente devido às melhores condições de solo e clima no país asiático.

O conteúdo de nutrientes em cada constituinte do cacho (espigueta, pedúnculo, polpa, casca e amêndoa) foi pesquisada por NG & THAMBOO (1967), sendo que os principais resultados obtidos foram: a) mais de 1/3 de nitrogênio foi encontrado na polpa; a ordem decrescente foi: polpa > espigueta > amêndoa > casca > pedúnculo; b) cerca de 2/3 do total de fósforo no cacho encontra-se dividido igualmente entre amêndoa e polpa, e cerca de 1/5 reside na espigueta; a sequência na extração foi: amêndoa > polpa > espigueta > casca > pedúnculo; c) cerca de 40% e 25% do conteúdo de potássio foram encontrados na espigueta e pedúnculo, respectivamente; o maior conteúdo de potássio foi encontrado na espigueta e menor na casca; d) metade do conteúdo de magnésio dos frutos se encontra na polpa; baixos conteúdos foram observados na casca e pedúnculo; cerca de 60% do conteúdo total de magnésio foi observado nos frutos; e) o conteúdo de cálcio na polpa foi aproximadamente a metade do total; amêndoa e casca foram cerca de 10% do conteúdo total. No geral, os dados mostraram que nos frutos, a polpa apresentou maior quantidade de nutrientes, enquanto a amêndoa somente em nitrogênio e fósforo.

A Tabela 3, apresenta os dados dos conteúdos de nutrientes encontrados por TINKER & SMILDE (1963), NG & THAMBOO (1967), NG et alii (1968a) e NG et alii (1968b), em diferentes componentes e idades do dendezeiro, condições de manejo, ecorregiões, etc.

2.4. Exportação de Nutrientes

Existem várias maneiras pela qual o "status" de nutrientes de um solo cultivado com o dendezeiro pode ser reduzido, tais como: perdas por lixiviação, nutrientes não disponíveis, nutrientes utilizados no desenvolvimento vegetativo e exportação pelos frutos. Destas, a exportação pelos frutos contribui de modo substancial, pois consideráveis quantidades de nutrientes podem ser removidas por ocasião da colheita dos cachos.

A quantidade de nutrientes extraída pelos frutos do dendezeiro conforme pesquisas realizadas por NG (1972), com base numa produção de 1 t/ha/ano de frutos frescos, foi: 3,7 kg de K, 2,9 kg de N, 0,8 kg de Mg, 0,7 kg de Ca e 0,4 kg de P. Os resultados obtidos pelos pesquisadores priorizaram a necessidade do potássio e nitrogênio na produção, sendo que ao fósforo coube um papel menor.

Tabela 3 - Conteúdo de nutrientes em diferentes componentes e idade do dendezeiro.

(g/planta) Nigéria Politoias 7-10-11-717-20-22 410-580-560-620-930-810 Nigéria Politoias 7-10-11-717-20-22 410-580-560-620-930-810 Nigéria Politoias 7-10-11-717-20-22 1370-210-200-240-230 Nigéria Politoias 7-10-11-717-20-22 1370-210-200-240-230 Nigéria Politoias 7-10-11-717-20-22 1370-210-200-240-230 Nigéria Politoias 7-10-11-717-20-22 1370-210-200-240-230 Nigéria Politoias 7-10-11-717-20-22 1370-210-300-240-230 Nigéria Politoias 7-10-11-717-20-22 30-350-313-0-30-30 Nigéria Politoias 7-10-11-717-20-22 30-350-1310-130-130 Nigéria Politoias 7-10-11-717-20-22 30-350-1310-130-130 Nigéria Politoias 7-10-11-717-20-22 30-350-1310-130-130 Nigéria Politoia 7-10-11-717-20-22 7-10-11-717-20-22 Nigéria Politoia Polit	Nutriente	Local	Componente	Idade (anos)	Conteúdo	Autor(es)
(g/planta) Majásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 30c-447-673-549-760-708-837-900 (g/planta) Majásia Róquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 30c-447-673-549-760-700-320 (g/planta) Majásia Róquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 185-190-220-0-300-300-300 (g/planta) Majásia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 121-16-20-12-12-14-6 (g/planta) Majásia Esttpe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 30-640-300-40-30 (g/planta) Majásia Flecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 30-60-12-12-14-6 (g/planta) Majásia Popa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 30-60-10-130-1300-1100-1100-1100-1100-11	N (ø/blanta)	Nigeria	Folfolos	7-10-14-17-20-22	410-580-560-620-930-810	TINKER & SMILDE (1963)
(g/planta) Migéria Ráquis 7-10-14-17-20-22 170-210-200-240-340-230 (g/planta) Migéria "Cabbage" 7-10-14-17-20-22 170-210-200-20-30-40-30 (g/planta) Migéria "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 180-198-228-131-1210-1340-30 (g/planta) Migéria "Cabbage" 2,4-3,4-4,3-5,3-6,3-7,5-8,5-9,5 12-11-16-20-12-12-12-14-8 (g/planta) Migéria "Cabbage" 2,4-3,4-4,3-5,3-6,3-7,5-8,5-9,5 12-11-16-20-12-12-12-14-8 (g/planta) Malásia Estipe 2,4-3,4-4,3-5,3-6,3-7,5-8,5-9,5 12-11-16-20-12-12-12-14-8 (g/planta) Malásia-D. Durian Polpa 10 a 15 2-3-7,5-8,5-9,5 12-11-16-20-12-12-12-13 (g/planta) Malásia-Serdang Polpa 10 a 15 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 10-60-96-58-20-1303-1155-1233-1333 (g/planta) Malásia-Serdang Polpa 10 a 15 1,50-19-19-13 1,40-60-96-58-20-12-12-12-12 (g/planta) Malásia-Serdang Améndoa 10 a 15 1,50-19-13-12 1,40-20-15-13-13 (g/planta) Malásia-Serdang Améndoa	(man d /9)	Malasta	Foliolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	306-447-673-549-760-708-837-900	NG et al. (1968a)
Gp/panta) Nadista Rāgūis 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 185-198-228-191-1210-344-295-300 Gp/panta) Nigēria "Cabbage" 7-10-14-17-20-22 30-30-40-30-40-30 Gp/panta) Nigēria "Cabbage" 7-10-14-17-20-22 30-30-40-30-40-30 Gp/panta) Nigēria Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 12-11-16-20-12-12-12-12-12-12-12-12-12-12-12-12-12-		Nigeria	Raquis	7-10-14-17-20-22	170-210-200-240-340-220	TINEKR & SMILDE (1963)
Gpplanta Nigéria "Cabbage" 7-10-14-17-20-22 30-30-40-30-40-30 Gpplanta Nigéria "Cabbage" 2,4-3,4-3,5-3-6,3-7,5-8,5-9,5 30-30-40-30-110-130-130-130-130-130-130-130-130		Malásta	Ráquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	185-198-228-191-210-344-295-300	NG et al. (1968a)
Gp/panta Maiásia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 12-11-16-20-12-12-14-8 (g/planta) Nigéria Estipe 7-10-14-17-20-22 330-850-1310-1330-1930-1170 (g/planta) Maiásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 330-850-1310-1330-1930-1170 (g/planta) Maiásia Capa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 330-850-1305-1125-1123 (g/planta) Maiásia-Derengau¹ Polpa 10 a 15 4,05-47,5-8 (g/planta) Maiásia-Serdang¹ Polpa 10 a 15 4,05-47,53 (g/planta) Maiásia-Serdang¹ Gasca 10 a 15 2,44-20,84 (g/planta) Maiásia-Serdang¹ Améndoa 10 a 15 2,42-33,17 (g/planta) Maiásia-Serdang¹ Améndoa 10 a 15 3,36-24,55 (g/planta) Maiásia-Serdang¹ Améndoa 10 a 15 2,42-33,69 (g/planta) Maiásia-Durian Améndoa 10 a 15 3,36-24,55 (g/planta) Maiásia-Durian Améndoa 10 a 15 2,42-33,60 (g/planta) <		Nigeria	"Cabbage"	7-10-14-17-20-22	30-30-40-30-40-30	TINKER & SMILDE (1963)
G/planta Nigéria Estipe 7-10-14-17-20-22 330-850-1310-1530-1930-1170 (g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 244-470-628-895-818-1509-1660-1460 (g/planta) Malásia Plecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 24-48-59-54-91-92-123 (g/planta) Malásia-Serdang Polpa 10 a 15 2,4-3,3-6,3-7,5-8,5-9,5 2,40-680-965-820-1036-1155-1238-1333 (g/planta) Malásia-Serdang Polpa 10 a 15 2,4-3,3-6,3-7,5-8,5-9,5 2,40-680-965-820-1036-1155-1238-1333 (g/planta) Malásia-Serdang Polpa 10 a 15 2,4-3,3-7,5-8,5-9,5 2,40-680-965-820-1036-1155-1238-1333 (g/planta) Malásia-Serdang Polpa 10 a 15 2,4-1,5-1,5-8,5-9,5 2,40-680-965-820-1036-1155-1238-1333 (g/planta) Malásia-Serdang Améndoa 10 a 15 1,50-49,3 (g/planta) Malásia-Serdang Améndoa 10 a 15 3,36-24,55 (g/planta) Malásia-Serdang Améndoa 10 a 15 3,36-24,55 (g/planta) Malásia-Serdang Espigueta 10 a 15 <td< td=""><td>N (g/planta)</td><td>Malasia</td><td>"Cabbage"</td><td>2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5</td><td>12-11-16-20-12-12-14-8</td><td>NG et al. (1968a)</td></td<>	N (g/planta)	Malasia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	12-11-16-20-12-12-14-8	NG et al. (1968a)
Gpplanta Malásia Batipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 284-470-628-895-818-1509-1660-1660 NG et al. (13) Gpplanta Malásia Batifie 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 284-470-628-895-818-1509-1660-1660 NG et al. (13) Gpplanta Malásia Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 50-680-955-80-1036-1155-1238-1338 NG et al. (13) Gpplanta Malásia-Gerdang Polpa 10 a 15 3-7,5-8,5-9,5 50-680-955-80-1036-1155-1238-1338-138 NG et al. (10) Gpplanta Malásia-Gerdang Polpa 10 a 15 150-19,81 NG et THAMDOO Gpplanta Malásia-Gerdang Casca 10 a 15 150-19,81 NG et THAMDOO Gpplanta Malásia-Gerdang Améndoa 10 a 15 150-19,81 NG et THAMDOO Gpplanta Malásia-Gerdang Améndoa 10 a 15 12,4-20,84 NG et THAMDOO Gpplanta Malásia-Gerdang Améndoa 10 a 15 12,4-20,84 NG et THAMDOO Gpplanta Malásia-Gerdang Améndoa 10 a 15 12,4-20,34 NG et THAMDOO <t< td=""><td></td><td>Nigeria</td><td>Estipe</td><td>7-10-14-17-20-22</td><td>330-850-1310-1530-1930-1170</td><td>TINKER & SMILDE (1963)</td></t<>		Nigeria	Estipe	7-10-14-17-20-22	330-850-1310-1530-1930-1170	TINKER & SMILDE (1963)
G/planta Malásia-Dourian Flecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 37-24-48-59-54-91-92-123 NG et al. (19 et al. (1	N (g/planta)	Malasia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	284-470-628-895-818-1509-1660-1460	NG et al. (1968a)
Gplanta Malásia-D. Durian Copa 2,4-3,3-6,3-7,5-8,5-9,5 5,40-680-965-820-1036-1155-1238-1333 NG et al. (19 G F) (2,0) (2,	-	Malasia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	37-24-48-59-54-91-92-123	NG et al. (1968a)
G/planta) Malásia-D. Durian¹ Poppa 10 a 15 5,49-40,55 NO & THAMBOO (g/planta) Malásia-Serdang¹ Poppa 10 a 15 15,50-44,53 NO & THAMBOO (g/planta) Malásia-Jerengau¹ Poppa 10 a 15 15,50-44,35 NO & THAMBOO (g/planta) Malásia-Jerengau¹ Casca 10 a 15 1,50-19,81 NO & THAMBOO (g/planta) Malásia-Jerengau¹ Casca 10 a 15 1,50-18,81 NO & THAMBOO (g/planta) Malásia-Jerengau¹ Amêndoa 10 a 15 3,36-24,55 NO & THAMBOO (g/planta) Malásia-Jerengau¹ Amêndoa 10 a 15 3,36-24,55 NO & THAMBOO (g/planta) Malásia-Jerengau¹ Amêndoa 10 a 15 3,36-24,55 NO & THAMBOO (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 2,72-2,17 NO & THAMBOO (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 2,52-2,26 NO & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 15,75-3,35	_	Malasia	Copa	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	540-680-965-820-1036-1155-1238-1333	NG et al. (1968a)
Gplantal Malásia-Serdang¹ Polpa 10 a 15 4,05-47,53 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Polpa 10 a 15 15 18,53-54,35 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Casca 10 a 15 1,50-19,81 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Casca 10 a 15 1,50-19,81 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Améndoa 10 a 15 3,46-24,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Améndoa 10 a 15 3,62-24,55 NG & THAMBOO (g/planta) Malásia-Serdang¹ Améndoa 10 a 15 2,56-22,26 NG & THAMBOO (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 2,72-19,69 NG & THAMBOO (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 2,72-19,69 NG & THAMBOO (g/planta) Malásia-Serdang¹ Pedúnculo 10 a 15 2,57-2,57 NG & THAMBOO (g/planta) Malásia-Serdang¹ Pedúnculo 10 a 15 <t< td=""><td>N (g/planta)</td><td>Malásia-D. Durian¹</td><td>Polpa</td><td>10 a 15</td><td>5,49-40,55</td><td>NG & THAMBOO (1967)</td></t<>	N (g/planta)	Malásia-D. Durian ¹	Polpa	10 a 15	5,49-40,55	NG & THAMBOO (1967)
Gplanta) Malásia-Jerengaul Popa 10 a 15 18,53-54,35 NG & THANBOO (g/planta) Malásia-Jerengaul Casca 10 a 15 1,50-19,81 NG & THANBOO (g/planta) Malásia-Serdangl Casca 10 a 15 1,50-19,81 NG & THANBOO (g/planta) Malásia-Serdangl Casca 10 a 15 10,70-18,81 NG & THANBOO (g/planta) Malásia-Serdangl Amêndoa 10 a 15 3,36-24,55 NG & THANBOO (g/planta) Malásia-Serdangl Amêndoa 10 a 15 30,8 NG & THANBOO (g/planta) Malásia-Serdangl Espigueta 10 a 15 2,55-22,26 NG & THANBOO (g/planta) Malásia-Serdangl Espigueta 10 a 15 2,72-19,69 NG & THANBOO (g/planta) Malásia-Serdangl Espigueta 10 a 15 2,52-2,26 NG & THANBOO (g/planta) Malásia-Jerengaul Espigueta 10 a 15 2,52-2,36 NG & THANBOO (g/planta) Malásia-Jerengaul Edúnculo 10 a 15 2,57-2,36 <t< td=""><td>N (g/planta)</td><td>Malasia-Serdang¹</td><td>Polpa</td><td>10 a 15</td><td>4,05-47,53</td><td>NG & THAMBOO (1967)</td></t<>	N (g/planta)	Malasia-Serdang ¹	Polpa	10 a 15	4,05-47,53	NG & THAMBOO (1967)
Gplanta) Malaŝia-D. Durian Casca 10 a 15 2,44-20,84 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Casca 10 a 15 1,50-19,81 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Casca 10 a 15 10,70-18,81 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Amêndoa 10 a 15 3,36-24,55 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Amêndoa 10 a 15 3,36-24,55 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Amêndoa 10 a 15 3,36-24,55 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Amêndoa 10 a 15 3,36-24,55 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Amêndoa 10 a 15 3,36-24,55 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Espigueta 10 a 15 2,55-22,26 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Espigueta 10 a 15 0,57-0,55 NG & THANBOO (g/planta) Malaŝia-Serdang¹ Pedúnculo 10 a 15 0,57-0,55	_	Malasia-Jerengau	Polpa	ದ	18,53-54,35	NG & THAMBOO (1967)
(g/planta) Malásia-Serdang ¹ Casca 10 a 15 1,50-19,81 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Casca 10 a 15 10,70-18,81 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Amêndoa 10 a 15 3,36-24,55 NG & THAMBOO (g/planta) Malásia-Serdang¹ Amêndoa 10 a 15 3,36-24,55 NG & THAMBOO (g/planta) Malásia-D. Durian Améndoa 10 a 15 30,8 NG & THAMBOO (g/planta) Malásia-D. Durian Espigueta 10 a 15 2,55-22,26 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 2,55-22,26 NG & THAMBOO (g/planta) Malásia-Jerengau³ Espigueta 10 a 15 2,55-22,26 NG & THAMBOO (g/planta) Malásia-Jerengau³ Espigueta 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Jerengau³ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau³ Pedúnculo 10 a 15 0,57-0,55	N (g/planta)	Malasia-D. Durian	Casca	a	2,44~20,84	& THAMBOO
Gplanta) Malásia-Jerengaul (gplanta) Casca 10 a 15 10,70-18,81 NG & THAMBOO (G THAMBOO (G Planta)) NG & THAMBOO (G THAMBOO (G THAMBOO (G Planta)) NG & THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G Planta))) NG & THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G Planta))) NG & THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G Planta))) NG & THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G Planta))) NG & THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G Planta))) NG & THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G THAMBOO (G Planta))) NG & THAMBOO (G		Malasia-Serdang	Casca	ಹ	1,50-19,81	& THAMBOO
Gplanta) Malasia-D. Durian¹ Amendoa 10 a 15 5,12-32,17 NG & THAMBOO (g/planta) Malásia-Serdang¹ Amendoa 10 a 15 3,36-24,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Amendoa 10 a 15 30,8 NG & THAMBOO (g/planta) Malásia-D. Durian¹ Espigueta 10 a 15 2,65-22,26 NG & THAMBOO (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 2,72-19,69 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 16,25-109,69 NG & THAMBOO (g/planta) Malásia-Derrian² Cacho 10 a 15 10,09-117	N (g/planta)	Malasia-Jerengau	Casca	æ	10,70-18,81	& THAMBOO
(g/planta) Malásia-Serdang¹ Amêndoa 10 a 15 3,36-24,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Inflorescência 10 a 15 30,8 NG & THAMBOO (g/planta) Malásia-D. Durian¹ Espigueta 10 a 15 2,65-22,26 NG & THAMBOO (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 2,72-19,69 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 16,25-109,6 NG & THAMBOO (g/planta) Malásia-Durian¹ Cacho 10 a 15 10,09-117,1 NG & THAMBOO	N (g/planta)	Malasia-D. Durian	Amendoa	10 a 15	5,12-32,17	& THAMBOO
(g/planta) Malásia-Jerengau ¹ Améndoa 10 a 15 11,48-25,88 NG & THAMBOO (g/planta) Malásia-D. Durian Inflorescência 10 a 15 30,8 NG & THAMBOO (g/planta) Malásia-D. Durian Espigueta 10 a 15 2,65-22,26 NG & THAMBOO (g/planta) Malásia-Jerengau ¹ Espigueta 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-D. Durian Pedúnculo 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Serdang ¹ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau ¹ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau ¹ Pedúnculo 10 a 15 16,25-109,6 NG & THAMBOO (g/planta) Malásia-D. Durian ¹ Cacho 10 a 15 10,09-117,1 NG & THAMBOO (g/planta) Malásia-Serdang ¹ Cacho 10 a 15 10,09-117,1 NG & THAMBOO		Malasia-Serdang	Amendoa	Ø	3,36-24,55	& THAMBOO
(g/planta) Malásia-D. Durian Inflorescência 10 a 15 30,8 NG & THAMBOO (g/planta) Malásia-D. Durian Espigueta 10 a 15 2,65-22,26 NG & THAMBOO (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 2,72-19,69 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Serdang¹ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 0,57-5,73 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Cacho 10 a 15 16,25-109,6 NG & THAMBOO (g/planta) Malásia-Serdang¹ Cacho 10 a 15 10,09-117,1 NG & THAMBOO	_	Malasia-Jerengau	Amendoa	В	11,48-25,88	& THAMBOO
(g/planta) Malásia-D. Durian¹ Espigueta 10 a 15 2,65-22,26 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 2,72-19,69 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Serdang¹ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 2,57-5,73 NG & THAMBOO (g/planta) Malásia-D. Durian¹ Cacho 10 a 15 16,25-109,6 NG & THAMBOO (g/planta) Malásia-Serdang¹ Cacho 10 a 15 10,09-117,1 NG & THAMBOO		Malasia-D. Durlan	Inflorescência masculina	Ø	30,8	రు
(g/planta) Malásia-Serdang¹ Espigueta 10 a 15 2,72-19,69 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Serdang¹ Pedúnculo 10 a 15 0,57-0,55 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 2,57-5,73 NG & THAMBOO (g/planta) Malásia-D. Durian¹ Cacho 10 a 15 16,25-109,6 NG & THAMBOO (g/planta) Malásia-Serdang¹ Cacho 10 a 15 10,09-117,1 NG & THAMBOO		Malásia-D. Durian ¹	Espigueta	Ø	2,65-22,26	& THAMBOO
(g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 12,21-22,36 NG & THAMBOO (g/planta) Malásia-D. Durian¹ Pedúnculo 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Pedúnculo 10 a 15 2,57-5,73 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Cacho 10 a 15 16,25-109,6 NG & THAMBOO (g/planta) Malásia-Serdang¹ Cacho 10 a 15 10,09-117,1 NG & THAMBOO		Malásia-Serdang ^l	Espigueta	ជ	2,72-19,69	& THAMBOO
(g/planta) Malásia-D. Durian¹ Pedúnculo 10 a 15 0,54-3,50 NG & THAMBOO (g/planta) Malásia-Serdang¹ Pedúnculo 10 a 15 2,57-5,73 NG & THAMBOO (g/planta) Malásia-D. Durian¹ Cacho 10 a 15 16,25-109,6 NG & THAMBOO (g/planta) Malásia-Serdang¹ Cacho 10 a 15 10,09-117,1 NG & THAMBOO		Malásia-Jerengau	Espigueta	ದ	12,21-22,36	& THAMBOO
(g/planta) Malaŝia-Serdang¹ Pedúnculo 10 a 15 0,57-0,55 NG & (g/planta) Malaŝia-Jerengau¹ Pedúnculo 10 a 15 16,25-109,6 NG & (g/planta) Malaŝia-Serdang¹ Cacho 10 a 15 10,09-117,1 NG &		Malasia-D. Durian	Pedúnculo	Ø	0,54-3,50	& THAMBOO
(g/planta) Malásia-Jerengau ¹ Pedúnculo 10 a 15 $2,57-5,73$ NG & (g/planta) Malásia-D. Durian ¹ Cacho 10 a 15 $16,25-109,6$ NG & $(g/planta)$ Malásia-Serdang ¹ Cacho 10 a 15 $10,09-117,1$ NG & NG &		Malasia-Serdang	Peduncu10	ದ	0,57-0,55	& THAMBOO
(g/planta) Malásia-D. Durian 1 Cacho 10 a 15 16,25-109,6 NG & (g/planta) Malásia-Serdang 1 Cacho 10 a 15 10,09-117,1 NG &		Malásia-Jerengau	Pedúncu10	ಡ	2,57-5,73	& THAMBOO
(g/planta) Malasia-Serdang Cacho 10 a 15 10,09-117,1 NG & THAMBOO		Malasia-D. Durian	Cacho	Ø	16,25-109,6	Ø
		Malasia-Serdang ¹	Cacho	ಹ	10,09-117,1	& THAMBOO

Tabela 3 - Continuação

Migéria Frutos 10 a 15 56,88-117,6 Nigéria Frutos 20 a 22 70 Nigéria Frutos 20 a 22 70 Nigéria Arvore 20 a 22 70 Nigéria Arvore 20 a 22 70 Nigéria Folfolos 7-10-14-17-20-22 30-40-40-40-70-60 Nigéria Réquis 7-10-14-17-20-22 30-40-40-40-52-40-53-43-44-46-52 Nigéria Réquis 7-10-14-17-20-22 30-40-40-40-52-40-53-43-44-46-52 Nigéria Réguis 7-10-14-17-20-22 30-40-40-40-52-40-53-43-44-46-52 Nigéria Réguis 7-10-14-17-20-22 40-80-17-17-17-30-40-52-43-44-46-52 Nigéria Répuis 7-10-14-17-20-22 40-80-17-17-17-30-40-50-40-40-40-40-40-40-40-40-40-40-40-40-40	Nutriente	Local	Componente	Idade (anos)	Conteúdo	Autor(es)
(kg/ha)² Nigéria Frutos 20 a 22 430 (kg/ha)² Nigéria Refzes 20 a 22 70 (kg/ha)² Nigéria Fortone 20 a 22 30 (g/planta) Nigéria Fortone 7-10-14-17-20-22 30-40-40-40-70-60 (g/planta) Nigéria Fortone 7-10-14-17-20-22 30-40-40-40-70-60 (g/planta) Nigéria Fortone 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 18-27-43-33-4,3-4-3-2 (g/planta) Nigéria Réquis 7-10-14-17-20-22 2-1-4-3-20-20 2-1-4-3-20-20 (g/planta) Nigéria Réquis 7-10-14-17-20-22 2-1-3-4-3-3-4-3-2-2 2-1-3-4-3-2-2 (g/planta) Nigéria Estipe 7-10-14-17-20-22 2-1-3-3-4-3-2 2-1-3-3-4-3-2 (g/planta) Naiásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-17-11-121-129-170-133-175 (g/planta) Naiásia-Serdang Polpa 10 a 15 3-4-6-1-3-6,3-7,5-8,5-9,5 4-6-111-121-129-170-133-175 (g/planta) Naiásia-Serdang Polpa 10 a 15		Malasia-Jerengau	Cacho	a	56,88-117,6	NG & THAMBOO (1967)
(kg/ha)² Nigéria Rafzes 20 a 22 70 (kg/ha)² Nigéria Krore 20 a 22 30 (kg/ha)² Nigéria Krore 20 a 22 30 (g/planta) Nigéria Folfolos 7-10-14-17-20-22 30-40-40-40-70-60 (g/planta) Nigéria Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 30-20-30-40-30-40 (g/planta) Nigéria Ráquis 7-10-14-17-20-22 30-20-30-40-30-40 (g/planta) Nigéria Ráquis 7-10-14-17-20-22 30-20-30-40-30-40 (g/planta) Nigéria Ráquis 7-10-14-17-20-22 30-20-30-40-30-40 (g/planta) Nigéria Réquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 2-10-10-17-20-20 (g/planta) Nigéria Rettpe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-11-12-12-12-17-17-17-17-17-17-17-17-17-17-17-17-17-		Nigeria	Frutos	0 a	430	TINKER & SMILDE (1963)
(g/planta) Nigéria frore 20 a 22 390 (g/planta) Nigéria Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 18-27-43-35-44-44-46-52 (g/planta) Nigéria Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 18-27-43-35-44-44-46-52 (g/planta) Nigéria Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 18-27-43-35-44-44-46-52 (g/planta) Nigéria Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 26-21-45-46-39-54-33-72 (g/planta) Nigéria (-0-14-17-20-22 30-20-30-40-90-40 (g/planta) Nigéria (-0-14-17-20-22 26-27-43-3-5-43-2 (g/planta) Nigéria (-0-14-17-20-22 26-27-43-3-5-43-2 (g/planta) Nigéria (-0-14-17-20-22 26-27-43-3-5-43-2 (g/planta) Nigéria (-0-14-11-20-22 26-27-43-3-15 (g/planta) Nalésia 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-3-11-121-129-170-133-175 (g/planta) Nalésia-Dirian Polpa 10 a 15 0,53-6,9-7 4-6-1-1-1-129-170-133-175 (g/planta) Nalésia-Jerengaul Acca </td <td></td> <td>Nigeria</td> <td>Raizes</td> <td>0 a</td> <td>70</td> <td>TINKER & SMILDE (1963)</td>		Nigeria	Raizes	0 a	70	TINKER & SMILDE (1963)
(g/planta) Nigéria Folfos 7-10-14-17-20-22 30-40-40-70-60 (g/planta) Malásia Folfos 2-4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 18-74-43-35-43-44-46-52 (g/planta) Malásia Folfos 2-4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 18-74-43-35-43-44-46-52 (g/planta) Malásia Ráquis 7-10-14-17-20-22 30-20-30-40-90-40 (g/planta) Magéria "Gabbage" 2-4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 2-6-71-48-5 (g/planta) Magéria Réquis 2-4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 2-7-7-9-6-5 (g/planta) Malásia Estipe 7-10-14-17-20-22 4-0-80-110-170-170-130-175 (g/planta) Malásia Polpa 10-15-22 4-6-3-111-121-129-170-133-175 (g/planta) Malásia-Serdang Polpa 10-15-3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-7-110-112 (g/planta) Malásia-Serdang Aménda 10-15-3-3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-7-110-112 (g/planta) Malásia-Serdang Aménda 10-15-3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-111-121-129-170-133-175 (g/planta) Malásia-Serdang Amé		Nigeria	Arvore	0 a	390	TINKER & SMILDE (1963)
gplanta Magaia Folicios 2,4-3,4,3-5,3-6,3-7,5-8,5-9,5 18-27-43-35-43-44-46-52 gplanta Nigéria Ráquis 7-10-14-17-20-22 30-20-30-40-90-40 gplanta Malásia Ráquis 7-10-14-17-20-22 30-20-30-40-90-40 gplanta Malásia Ráquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 5-6-37-54-33-72 gplanta Malásia Ratpe 7-10-14-17-20-22 5-6-3-7-8-6-3-2 gplanta Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-63-111-121-129-170-133-175 gplanta Malásia Polpa 10 a 15 2,4-3,7-6,8-5-9,5 4-63-111-121-129-170-133-175 gplanta Malásia-Jerengau Polpa 10 a 15 2,4-3-7,5-8,5-9,5 4-63-111-121-129-170-133-175 gplanta Malásia-Jerengau Polpa 10 a 15 2,4-6,2-7,5-8,5-9,5 4-63-111-121-129-170-133-175 gplanta Malásia-Jerengau Polpa 10 a 15 2,4-6,2-7,5-8,5-9,5 4-63-111-121-129-170-133-175 gplanta Malásia-Jerengau Polpa 10 a 15 2,4-6,2-7,5-8,5-9,5 4-63-111-121-129-170-133-175		Niperia	Folfolos	7-10-14-17-20-22	30-40-40-40-90-90	TINKER & SMILDE (1963)
(g/plants) Nigéria Ráquis 7-10-14-17-20-22 30-20-30-40-90-40 (g/plants) Malásia Ráquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 26-31-45-46-99-54-33-72 (g/plants) Nigéria "Cabbage" 7-10-14-17-20-22 5-67-7-8-5 (g/plants) Nigéria "Cabbage" 7-10-14-17-20-22 5-67-7-8-5 (g/plants) Nigéria Estipe 7-10-14-17-20-22 5-67-7-8-5 (g/plants) Nigéria Estipe 2-4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 2-15-3-4-3-2 (g/plants) Malásia Flecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-111-121-129-170-133-175 (g/plants) Malásia-Serdang Polpa 10 a 15 0,63-6,9 0,63-111-121-129-170-133-175 (g/plants) Malásia-Jerengau Polpa 10 a 15 0,03-0,9 0,63-0,9 0,94-0,0 (g/plants) Malásia-Jerengau Casca 10 a 15 0,02-0,47 0,03-0,9 0,02-0,47 0,03-0,9 (g/plants) Malásia-Jerengau Casca 10 a 15 0,03-0,47 0,03-0,47 0,03-0,47		Malásia	Folfolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	18-27-43-35-43-44-46-52	NG et al. (1968a)
(g/planta) Malāsia Rāquis 2,4-3,3-4,3-5,3-6,3-7,5-9,5 26-31-45-46-39-54-33-72 (g/planta) Nugēria "Cabbage" 7-10-14-17-20-22 5-6-7-8-5 (g/planta) Malāsia "Cabbage" 7-10-14-17-20-22 5-6-7-8-5 (g/planta) Malāsia Estipe 7-10-14-17-20-2 4-80-170-170-300-200 (g/planta) Malāsia Estipe 2,4-3,4-4,3-5,3-6,3-7,5-8,5-9,5 4-63-111-121-129-170-133-175 (g/planta) Malāsia-Serdamg Popa Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-7-6-10-9-15 (g/planta) Malāsia-Jerengau Popa Polpa 10 a 15 0,63-9,94 4-63-111-121-129-170-133-175 (g/planta) Malāsia-Jerengau Popa 10 a 15 0,63-9,94 6-63-011-121-129-170-133-175 (g/planta) Malāsia-Jerengau Popa 10 a 15 0,63-9,94 6-63-011-121-129-170-133-175 (g/planta) Malāsia-Jerengau Popu Popa 10 a 15 0,63-9,94 0,63-9,94 (g/planta) Malāsia-Jerengau Popu Popu Popu Popu Popu Popu Popu Pop		Nigeria	Raquis	7-10-14-17-20-22	30-20-30-40-90-40	TINKER & SMILDE (1963)
(g/planta) Nigéria "Cabbage" 7-10-14-17-20-22 5-6-7-7-8-5 (g/planta) Malésia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 2-15-3-4-3-2 (g/planta) Malésia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 40-80-170-170-300-200 (g/planta) Malésia Estipe 7-10-14-17-20-22 40-80-170-170-133-175 (g/planta) Malésia-D. Durian Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-63-111-121-129-170-133-175 (g/planta) Malésia-Serdang Polpa 10 a 15 0,63-9,9 4-63-111-121-129-170-133-175 (g/planta) Malésia-Jerengau Polpa 10 a 15 0,63-9,9 4-63-111-121-129-170-133-175 (g/planta) Malésia-Jerengau Polpa 10 a 15 0,63-0,9 9,4-6,02 (g/planta) Malésia-Jerengau Polpa 10 a 15 0,05-0,53 0,05-0,53 (g/planta) Malésia-Jerengau Polpa 10 a 15 0,05-0,53 0,05-0,53 (g/planta) Malésia-Jerengau Polpa 10 a 15 0,05-0,53 0,05-0,53 (g/planta) Malésia-Jerengau Polpa 10 a 15 0,05-0	P (g/planta)	Malasia	Ráquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	26-31-45-46-39-54-33-72	NG et al. (1968a)
(g/planta) Migéria "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 2-15-3-4-3-2 NG et (g/planta) (g/planta) Migéria Estipe 7-10-14-17-20-22 40-80-170-170-133-175 NG et (g/planta) (g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-7-6-10-9-15 NG et (g/planta) (g/planta) Malásia-Serdang Longal Polpa 10 a 15 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-7-6-10-9-15 NG et (g/planta) (g/planta) Malásia-Serdang Longal Polpa 10 a 15 2,4-6,3-6,03 4-6,3-6,03 4-6,3-6,03 4-6,3-6,03 NG et (g/planta) <	P (g/planta)	Nigéria	"Cabbage"	7-10-14-17-20-22	5-6-7-7-8-5	TINKER & SMILDE (1963)
(g/planta) Nigéria Estipe 7-10-14-17-20-22 40-80-170-170-170-20-20 TINKER (g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-9111-121-129-170-133-175 NG et (g/planta) Malásia Flecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-76-110-9-15 NG et (g/planta) Malásia-Serdang¹ Polpa 10 a 15 9,83-6,8 9.94 NG et (g/planta) Malásia-Serdang¹ Polpa 10 a 15 9,83-6,99 NG ét NG ét (g/planta) Malásia-Serdang¹ Polpa 10 a 15 0,03-0,47 NG ét (g/planta) Malásia-Serdang¹ Améndoa 10 a 15 0,03-0,47 NG ét (g/planta) Malásia-Serdang¹ Améndoa 10 a 15 0,03-0,47 NG ét (g/planta) Malásia-Serdang¹ Améndoa 10 a 15 0,36-6,09 NG ét (g/planta) Malásia-Durian Inflorescéncia 10 a 15 0,36-5,22 NG ét (g/planta) Malásia-Serdang¹ Améndoa 10 a 15		Malásia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	2-15-3-4-3-2	NG et al. (1968a)
(g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-63-111-121-129-170-133-175 NG et (g/planta) Malásia Flecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-7-6-10-9-15 NG et (g/planta) Malásia-Durian Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-7-6-10-9-15 NG et (g/planta) Malásia-Serdang dasa-Serdang dasa-S		Nigeria	Estipe	7-10-14-17-20-22	40-80-170-170-300-200	TINKER & SMILDE (1963)
(g/planta) Malásia Flecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-4-6-7-6-10-9-15 NG et (g/planta) Malásia Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-6-7-6-10-9-15 NG et (g/planta) Malásia-Serdang¹ Polpa 10 a 15 0,63-9,94 NG & (g/planta) Malásia-Serdang¹ Polpa 10 a 15 0,63-9,94 NG & (g/planta) Malásia-Serdang¹ Polpa 10 a 15 0,63-9,94 NG & (g/planta) Malásia-Serdang¹ Casca 10 a 15 0,05-0,53 NG & (g/planta) Malásia-Jerengau¹ Améndoa 10 a 15 0,05-0,47 NG & (g/planta) Malásia-Jerengau¹ Améndoa 10 a 15 0,93-6,09 NG & (g/planta) Malásia-Jerengau¹ Améndoa 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Derengau¹ Améndoa 10 a 15 0,36-5,30 NG & (g/planta) Malásia-Derengau¹ Espigueta 10 a 15 0,36-5,30 NG & (g		Malasia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	4-63-111-121-129-170-133-175	NG et al. (1968a)
(g/planta) Malásia-Derdana Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 4-63-111-121-129-170-133-175 NG & C & C & C & C & C & C & C & C & C &	P (g/planta)	Malásia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	4-4-6-7-6-10-9-15	
(g/planta) Malásia-D. Durian Polpa 10 a 15 0,83-6,68 NG & (g/planta) Malásia-Serdang Polpa 10 a 15 0,63-9,94 NG & (g/planta) Malásia-Jerengau Polpa 10 a 15 0,05-0,53 NG & (g/planta) Malásia-Jerengau Casca 10 a 15 0,05-0,47 NG & (g/planta) Malásia-Jerengau Casca 10 a 15 0,13-0,49 NG & (g/planta) Malásia-Jerengau Améndoa 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Jerengau Améndoa 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Jerengau 10 a 15 0,36-5,22 NG & (g/planta) Malásia-D. Durian Inflorescência mascullna 10 a 15 0,36-5,22 (g/planta) Malásia-Serdang 18 pigueta 10 a 15 0,59-6,99 (g/planta) Malásia-D. Durian Bspigueta 10 a 15 0,59-3,02 (g/planta) Malásia-Serdang 18 pigueta 10 a 15	P (g/planta)	Malásia	Copa	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	4-63-111-121-129-170-133-175	
(g/planta) Malásia-Serdang ¹ Polpa 10 a 15 0,63-9,94 NG & & & & & & & & & & & & & & & & & & &	P (g/planta)	Malásta-D. Durian ¹	Polpa	10 a 15	0,83-6,68	
(g/planta) Malásia-Jerengau¹ Polpa 10 a 15 2,34-6,02 NG & (g/planta) Malásia-D. Durian¹ Casca 10 a 15 0,05-0,53 NG & (g/planta) Malásia-Serdang¹ Casca 10 a 15 0,13-0,49 NG & (g/planta) Malásia-D. Durian¹ Amêndoa 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Jerengau¹ Amêndoa 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Jerengau¹ Inflorescência 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Serdang¹ Inflorescência 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 0,59-3,02 NG & (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 0,33-3,02 NG & (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 0,93-3,02 NG & (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 0,93-3,02 NG &	P (g/planta)	Malásia-Serdang	Polpa	ø	0,63-9,94	
(g/planta) Malásia-D. Durian¹ Casca 10 a 15 0,05-0,53 NG & (g/planta) Malásia-Serdang¹ Casca 10 a 15 0,02-0,47 NG & (g/planta) Malásia-Jerengau¹ Casca 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Derengau¹ Amêndoa 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Jerengau¹ Amêndoa 10 a 15 0,36-5,22 NG & (g/planta) Malásia-D. Durian Inflorescência 10 a 15 0,36-5,22 NG & (g/planta) Malásia-D. Durian Inflorescência 6,48 NG & (g/planta) Malásia-D. Durian¹ Espigueta 10 a 15 0,59-3,02 NG & (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 0,69-3,02 NG & (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,69-3,02 NG & (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,69-6,47 NG &		Malásia-Jerengau	Polpa		2,34-6,02	& THAMBOO
(g/planta) Malásia-Serdang¹ Casca 10 a 15 0,02-0,47 NG & (g/planta) Malásia-Jerengau¹ Casca 10 a 15 0,13-0,49 NG & (g/planta) Malásia-Jerengau¹ Amêndoa 10 a 15 0,95-6,09 NG & (g/planta) Malásia-Jerengau¹ Amêndoa 10 a 15 2,98-6,47 NG & (g/planta) Malásia-D. Durian Inflorescência 6,48 NG & (g/planta) Malásia-D. Durian¹ Espigueta 10 a 15 0,59-3,02 NG & (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 0,33-3,02 NG & (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,09-0,77 NG &	P (g/planta)	Malasia-D. Durian	Casca	-	0,05-0,53	
(g/planta) Malásia-Jerengau¹ Casca 10 a 15 0,13-0,49 NG & (g/planta) Malásia-D. Durian¹ Amêndoa 10 a 15 0,95-6,09 NG & (g/planta) Malásia-Jerengau¹ Amêndoa 10 a 15 2,98-6,47 NG & (g/planta) Malásia-D. Durian¹ Inflorescência 10 a 15 6,48 NG & (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 0,59-3,02 NG & (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,33-3,02 NG & (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,09-0.77 NG &	P (g/planta)	Malásia-Serdang	Casca	Н	0,02-0,47	
(g/planta) Malásia-D. Durian Amêndoa 10 a 15 0,36-5,22 NG & (g/planta) Malásia-Jerengau Amêndoa 10 a 15 2,98-6,47 NG & (g/planta) Malásia-Jerengau Inflorescência 6,48 NG & (g/planta) Malásia-D. Durian Espigueta 10 a 15 0,59-3,02 NG & (g/planta) Malásia-Serdang Espigueta 10 a 15 0,33-3,02 NG & (g/planta) Malásia-Jerengau Espigueta 10 a 15 0,95-4,46 NG & (g/planta) Malásia-Jerengau Espigueta 10 a 15 0,95-4,46 NG &		Malasia-Jerengau	Casca		0,13-0,49	
(g/planta) Malásia-Serdang¹ Amēndoa 10 a 15 2,98-6,47 NG & (g/planta) Malásia-Jerengau¹ Amēndoa 10 a 15 2,98-6,47 NG & (g/planta) Malásia-D. Durian Inflorescência 6,48 NG & (g/planta) Malásia-D. Durian¹ Espigueta 10 a 15 0,59-3,02 NG & (g/planta) Malásia-Serdang¹ Espigueta 10 a 15 0,33-3,02 NG & (g/planta) Malásia-Jerengau¹ Espigueta 10 a 15 0,99-0,77 NG &		Malásia-D. Durian ¹	Amendoa	а 1	0,95-6,09	
(g/planta) Malásia-Jerengaul Amēndoa 10 a 15 2,98-6,47 NG & (g/planta) Malásia-D. Durian Inflorescência 6,48 NG & (g/planta) Malásia-D. Durian Espigueta 10 a 15 0,59-3,02 NG & (g/planta) Malásia-Serdang Espigueta 10 a 15 0,33-3,02 NG & (g/planta) Malásia-Jerengau Espigueta 10 a 15 0,09-0,77 NG &		Malásia-Serdang	Amendoa	a 1	0,36-5,22	
(g/planta) Malásia-D. Durian Inflorescência 6,48 (g/planta) Malásia-D. Durian Espigueta 10 a 15 0,59-3,02 NG &	P (g/planta)	Mal á sia-Jerengau ^l	Amendoa	a 1	2,98-6,47	
(g/planta) Malásia-D. Durian 10 a 15 6,48 (g/planta) Malásia-Serdang Espigueta 10 a 15 0,59-3,02 NG &		Malasia-D. Durian	Inflorescência			
(g/planta) Malásia-Derdang Espigueta 10 a 15 0,33-3,02 NG & (g/planta) Malásia-Jerengau Espigueta 10 a 15 1,55-4,46 NG &			masculina	a 1	6,48	
(g/planta) Malásia-Serdang Espigueta 10 a 15 1,55-4,46 NG &		Malásia-D. Durian	Espigueta	a 1	0,59-3,02	
(g/planta) Malásia-Jerengau ¹ Espigueta 10 a 15 1,55-4,46 NG &		Malásia-Serdang	Espigueta	a 1	0,33-3,02	
Marshare Dodinary 10 15 18 NG &		Malasia-Jerengaul		a 1	1,55-4,46	
Malasia-D. Dulian leumicalo 20 a 15	P (g/planta)	Malásia-D. Durian ¹	Pedunculo	10 a 15	0,09-0,77	NG & THAMBOO (1967)

Tabela 3 - Continuação

Misterdonto					
Martine	Local	Componente	Idade (anos)	Conteúdo	Autor(es)
P (g/planta)	Malásia-Serdang ^l	Pedúncu10	10 a 15	0,12-1,00	NG & THAMBOO (1967)
P (g/planta)	Malásia-Jerengau	Pedúnculo	10 a 15	0,09-0,76	NG & THAMBOO (1967)
P (g/planta)	Malásia-D. Durian ¹	Cacho	10 a 15	2,78-15,79	NG & THAMBOO (1967)
P (g/planta)	Malásia-Serdang ^l	Cacho	10 a 15	1,51-17,76	NG & THAMBOO (1967)
P (g/planta)	Malasia-Jerengau	Cacho	10 a 15	7,84-15,84	NG & THAMBOO (1967)
P (kg/ha) ²	Nigeria	Frutos	20 a 22	06	TINKER & SMILDE (1963)
P (kg/ha) ²	Nigeria	Raizes	20 a 22	5	TINKER & SMILDE (1963)
P (kg/ha)²	Nigeria	Árvore	20 a 22	55	TINKER & SMILDE (1963)
K (g/planta)	Nigeria	Foliolos	7-10-14-17-20-22	230-270-300-290-370-320	TINKER & SMILDE (1963)
K (g/planta)	Malasia	Foliolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	170-230-310-298-335-389-436-355	NG et al. (1968a)
K (g/planta)	Nigeria	Rāquis	7-10-14-17-20-22	360-380-230-430-270-310	TINKER & SMILDE (1963)
K (g/planta)	Malásia	Rāquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	560-830-781-938-934-995-1179-1440	NG et al. (1968a)
K (g/planta)	Nigeria	"Cabbage"	7-10-14-17-20-22	40-40-20-40-40-40	TINKER & SMILDE (1963)
K (g/planta)	Malasia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	1,5-1,4-1,9-2,5-2,0-0,8-1,0-1,0	MG et al. (1968a)
K (g/planta)	Nigeria	Estipe	7-10-14-17-20-22	300-650-870-1510-830-1150	TINKER & SMILDE (1963)
K (g/planta)	Malasia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	81-143-212-218-301-297-354-409	NG et al. (1968a)
K (g/planta)	Malasia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	54-44-60-92-70-130-132-177	NG et al. (1968a)
K (g/planta)	Malasia	Copa	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	797-111.7-11.72-1358-1360-1528-1765-1987	NG et al. (1968a)
K (g/planta)	Malásia-D. Durian ¹	Polpa	10 a 15	5,01-30,11	NG & THAMBOO (1967)
K (g/planta)	Malária-Serdang ^l	Polpa	10 a 15	3,10-55,29	NG & THAMBOO (1967)
K (g/planta)	Malásia-Jerengau ^l	Polpa	10 a 15	19,46-56,45	NG & THAMBOO (1967)
K (g/planta)	Malásia-D. Durian ¹	Casca	10 a 15	0,46-6,47	NG & THAMBOO (1967)
K (g/planta)	Malásia-Serdang ^l	Casca	10 a 15	0,45-9,09	NG & THAMBOO (1967)
K (g/planta)	Malasia-Jerengau ^l	Casca	10 a 15	2,72-7,16	NG & THAMBOO (1967)
K (g/planta)	Malasia-D. Durian	Amendoa	10 a 15	1,21-9,44	NG & THAMBOO (1967)
K (g/planta)	Malasia-Serdang	Amendoa	10 a 15	0,64-6,94	NG & THAMBOO (1967)
K (g/planta)	Malásia-Jerengau ^l	Amendoa	10 a 15	4,89-10,07	NG & THAMBOO (1967)
K (g/planta)	Malasia-D. Durian	Espigueta	10 a 15	9,03-63,26	NG & THAMBOO (1967)
K (g/planta)	Malasia-Serdang	Espigueta	10 a 15	3,27-59,68	NG & THAMBOO (1967)

國

題 題 題

回回回

題

國國國國國國國

題題題題題題題即21

Tabela 3 - Continuação

Nutriente	Local	Componente	Idade (anos)	Conteúdo	Autor(es)
K (g/planta)	Malasia-Jerengau	Espigueta	10 a 15	31,35-66,79	NG & THAMBOO (1967)
K (g/planta)	Malásia-D. Durian ¹	Pedunculo	10 a 15	4,59-31,50	NG & THAMBOO (1967)
K (g/planta)	Malasia-Serdang	Pedúnculo	10 a 15	1,86~34,42	NG & THAMBOO (1967)
K (g/planta)	Malasia-Jerengau	Pedúnculo	10 a 15	20,54-32,12	NG & THAMBOO (1967)
K (g/planta)	Malasia-D. Durian	Cacho	10 a 15	20,31-131,0	NG & THAMBOO (1967)
K (g/planta)	Malasia-Serdang	Cacho	10 a 15	9,12-165,4	NG & THAMBOO (1967)
K (g/planta)	Malásia-Jerengau ^l	Cacho	10 a 15	85,59-165,0	NG & RHAMBOO (1967)
K (g/planta)	Malasia-D. Durian	'Inflorescência			
		masculina	10 a 15	44,2	NG & THAMBOO (1967)
K (kg/ha) ²	Nigeria	Frutos	20 a 22	500	TINKER & SMILDE (1963)
K (kg/ha) ²	Nigeria	Raízes	20 a 22	06	TINKER & SMILDE (1963)
K (kg/ha)²	Nigeria	Árvore	20 a 22	250	TINKER & SMILDE (1963)
Ca (g/blanta)	Nigeria	Folfolos	7-10-14-17-20-22	140-150-200-160-370-290	TINKER & SMILDE (1963)
	Malasia	Foliolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	77-93-143-123-140-95-114-147	NG et al. (1968a)
	Nigeria	Rāquis	7-10-14-17-20-22	110-150-150-150-480-340	TINKER & SMILDE (1963)
Ca (g/planta)	Malasta	Raquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	88-99-143-116-145-154-131-186	NG et al. (1968a)
Ca (g/planta)	Nigeria	"Cabbage"	7-10-14-17-20-22	10-10-10-10-20-10	TINKER & SMILDE (1963)
Ca (g/planta)	Malasia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	1,5-1,4-1,9-2,5-2,0-0,8-1,0-1,0	NG et al. (1968a)
Ca (g/planta)	Nigeria	Estipe	7-10-14-17-20-22	140-270-360-630-1120-500	TINKER & SMILDE (1963)
Ca (g/planta)	Malasia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	81-143-212-218-301-297	NG et al. (1968a)
Ca (g/planta)	Malásia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	7-5-8-9-10-14-11-14	NG et al. (1968a)
Ca (g/planta)	Malásia	Copa	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	174-200-297-250-297-264-258-349	NG et al. (1968a)
Ca (g/planta).	Malásia-D. Durian	Polpa	10 a 15	1,03-9,80	NG et al. (1967)
Ca (g/planta)	Malasia-Serdang	Polpa	10 a 15	2,10-16,54	NG et al. (1967)
Ca (g/planta)	Malasia-Jerengau	Polpa	10 a 15	7,94-18,22	NG et al. (1967)
	Malasia-D. Durian	Casca	10 a 15	0,17-1,23	NG & THAMBOO (1967)
Ca (g/planta)	Malasia-Serdang	Casca	10 a 15	0,16-2,70	NG & THAMBOO (1967)
Ca (g/planta)	1 Malasia-Jerengau	Casca	10 a 15	0,56-1,44	NG & THAMBOO (1967)
Ca (g/planta)	Malásia-D. Durian ¹	Amendoa	10 a 15	0,30-2,14	NG & THAMBOO (1967)
Ca (g/planta)	Malasia-Serdang ^l	Amendoa	10 a 15	0,09-2,70	NG & THAMBOO (1.967)
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •				

Tabela 3 - Continuação

(g/planta) Nalāsii—Jerengau¹ Agēndos 10 a 15 1,13-7,01 NG 5 THABDO (196 (196 (196 (196 (196 (196 (196 (196	Nutriente	Local	Componente	Idade (anos)	Conteúdo	Autor(es)
(g/planta) Malásia-D. Durian Repigueta 10 a 15 1,13-7,01 (g/planta) Malásia-Serdang Repigueta 10 a 15 1,02-4,72 (g/planta) Malásia-Serdang Repigueta 10 a 15 1,02-4,92 (g/planta) Malásia-Serdang Repigueta 10 a 15 0,20-1,35 (g/planta) Malásia-Serdang Pedúnculo 10 a 15 1,02-4,92 (g/planta) Malásia-Serdang Cacho 10 a 15 2,44-19,06 (g/planta) Malásia-Serdang Cacho 10 a 15 3,4-37,74 (g/planta) Malásia-Serdang Cacho 10 a 15 18,77-36,57 (g/planta) Majásia Fruto 20 a 22 14,77-26,557 (g/planta) Migéria Fruto 20 a 22 24,73-74 (g/planta) Migéria Fruto 20 a 22 24,73-74 (g/planta) Migéria Fruto 20 a 22 24,73-74 (g/planta) Migéria Fruto 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 70-80-110-80-180-180-180-180-180-180-180-		Malasia-Jerengau	Amendoa	a 15	0,91-1,64	& THAMBOO
(g/planta) Malásia-Serdeng¹ Espigueta 10 a 15 1.82-14,72 (g/planta) Malásia-Serdeng¹ Espigueta 10 a 15 2,61-19,22 (g/planta) Malásia-Serdeng¹ Repigueta 10 a 15 0,20-1,35 (g/planta) Malásia-Serdeng¹ Pedúnculo 10 a 15 1,02-4,92 (g/planta) Malásia-Serdeng¹ Cacho 10 a 15 1,13-3,66 (g/planta) Malásia-Serdeng¹ Cacho 10 a 15 2,44-19,06 (g/planta) Malásia-Serdeng¹ Cacho 10 a 15 1,13-3,66 (g/planta) Malásia-Serdeng¹ Cacho 10 a 15 1,02-4,92 (g/planta) Malásia-Serdeng² Cacho 10 a 15 1,02-4,92 (g/planta) Malásia-Serdeng² Cacho 10 a 15 1,4-13,74 (g/planta) Malásia Folfolos Folfolos 7-10-14-17-20-22 20 (g/planta) Magéria Folfolos 7-10-14-17-20-22 70-80-180-62-33-104 (g/planta) Magéria Folfolos 7-10-14-17-20-22 </td <td></td> <td>Malasia-D. Durian</td> <td>Espigueta</td> <td>a 15</td> <td>1,13-7,01</td> <td>& THAMBOO</td>		Malasia-D. Durian	Espigueta	a 15	1,13-7,01	& THAMBOO
(g/planta) Maiāsia-Jerengaul Espigueta 10 a 15 2,61-19,32 (g/planta) Maiāsia-Jerengaul Pedinculo 10 a 15 1,02-4,32 (g/planta) Malāsia-Jerengaul Pedinculo 10 a 15 1,02-4,92 (g/planta) Malāsia-Serdang Pedinculo 10 a 15 1,02-4,92 (g/planta) Malāsia-Jerengaul Cacho 10 a 15 2,94-19,06 (g/planta) Malāsia-Jerengaul Cacho 10 a 15 2,94-19,06 (g/planta) Malāsia-Jerengaul Cacho 10 a 15 1,13-3,66 (g/planta) Malāsia-Jerengaul Cacho 10 a 15 1,13-3,66 (g/planta) Malāsia-Jerengaul Cacho 10 a 15 1,13-3,66 (g/planta) Migēria Fruto 20 a 22 14 (g/planta) Migēria Fruto 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 44-71-80-62-9-10-62-9-3-104 (g/planta) Migēria Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 44-71-80-66-9-3-104 (g/planta) Migēria Folfolos 2		Malasta-Serdang	Espigueta	a 15	1,82-14,72	& THAMBOO
(g/planta) Malásia-Serdang 1 Pedúnculo 10 a 15 0,20-1,35 Pedúnculo 10 a 15 1,02-4,92 Pedúnculo Pedúnculo 10 a 15 1,02-4,92 Pedúnculo Pedúnculo 10 a 15 1,13-3,66 Pedúnculo Pedúnculo 10 a 15 1,13-3,66 Pedúnculo Pedúnculo 10 a 15 2,94-19,06 Pedúnculo Pedúnculo Pedúnculo 10 a 15 2,94-19,06 Pedúnculo Pedúnculo Pedúnculo 10 a 15 2,94-19,06 Pedúnculo Pedún		Malasia-Jerengau	Espigueta	a 15	2,61-19,32	& THAMBOO
(g/planta) Malásia-Serdang Lacendoulo pedúnculo 10 a 15 1,02-4,92 Pedúnculo (g/planta) Malásia-Serdang Lacendo Cacho 10 a 15 1,33-36 Paga Lacendoulo 10 a 15 2,94-19,06 Paga Lacendoulo Paga Lacendoulo 10 a 15 2,94-19,06 Paga Lacendoulo Paga Lacendoulo Paga Lacendoulo 10 a 15 2,94-19,06 Paga Lacendoulo Paga La		Malasia-D. Durian	Pedúnculo	a 15	0,20-1,35	& THAMBOO
(g/planta) Malásia-Jerengul Pedúnculo 10 a 15 1,13-3,66 Pedúnculo (g/planta) Malásia-Jerengul Cacho 10 a 15 2,44-19,06 Pedúnculo (g/planta) Malásia-Jerengul Cacho 10 a 15 2,34-37,74 Pedúnculo (g/planta) Malásia-Serdang Cacho 10 a 15 18,57-36,57 Pedúnculo (kg/ha) ² Malásia-Jerengul Cacho 10 a 15 18,77-36,57 Pedúnculo (kg/ha) ² Migéria Fruto 20 a 22 20 2 (kg/ha) ² Migéria Frutos 20 a 22 2 2 (g/planta) Migéria Froifolos 7-10-14-17-20-22 70-80-10-62-93-104 70-80-80-90-280-240 (g/planta) Migéria Fraits 7-10-14-17-20-22 70-80-10-00-22-91-43-3-145-115-139-106 (g/planta) Migéria Fraits 7-10-14-17-20-22 70-80-80-90-92-80-240 (g/planta) Migéria Réquis 7-10-14-17-20-22 70-80-80-90-92-145-145-139-145-145-139-145-145-139-145-145-139-145-145-139-145-145-139-145-145-143-194-145-13		Malasia-Serdang 1	Pedunculo	a 15	1,02-4,92	& THAMBOO
(g/planta) Malásia-Serdang lasta-Durian lasta-Serdang lasta lasta-Serdang lasta lasta-Serdang lasta last		Malasia-Jerengau	Peduncu10	a 15	1,13-3,66	& THAMBOO
gpplanta Malásia-Serdang¹ Cacho 10 a 15 5,34-37,74 P (g/planta) Malásia-Serdang¹ Cacho 10 a 15 18,37-36,57 P (g/planta) Malásia-Jerengau¹ Cacho 10 a 15 18,37-36,57 P (g/planta) Malásia-Jerengau¹ Cacho 10 a 15 18,17 P (kg/ha)² Nigéria Fruto 20 a 22 76 P (kg/ha)² Nigéria Raizes 20 a 22 220 (kg/hanta) Nigéria Krore 20 a 22 220 (g/planta) Malásia Folfolos 7-10-14-17-20-22 70-80-110-80-180-160 (g/planta) Malásia Ráquis 7-10-14-17-20-22 70-80-110-91-39-145-123-176 (g/planta) Malásia "Cabbage" 7-10-14-17-20-22 70-80-110-10-14-12-11-11-10-10-10-10-10-10-10-10-10-10-10-		Malasia-D. Durlan	Cacho	a 15	2,94-19,06	& THAMBOO
(g/planta) Malásia-Jerengau¹ Cacho 10 a 15 18,57-36,57 P (g/planta) Malásia-Jerengau¹ Cacho 10 a 15 18,17 P (g/planta) Nigéria Fruto 20 a 22 76 P (kg/ha)² Nigéria Rruto 20 a 22 14 P (kg/ha)² Nigéria Rrove 20 a 22 220 14 (g/planta) Nigéria Raquis 7-10-14-17-20-22 70-80-110-80-180-160 (g/planta) Nigéria Râquis 7-10-14-17-20-22 70-80-110-80-130-16 (g/planta) Nigéria Râquis 7-10-14-17-20-22 70-80-180-180-160 (g/planta) Nigéria Râquis 7-10-14-17-20-22 70-80-190-230-240-176-123-176 (g/planta) Nigéria "Cabbage" 7-10-14-17-20-22 70-10-10-14-17-20-123-176 (g/planta) Nigéria Ratipe 7-10-14-17-20-22 70-10-10-14-13-13-14-1-13 (g/planta) Nigéria Ratipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 70-10-20-10-14-13-10-14-13-10-14-13-10-14-13-1		Malasia-Serdang	Cacho	a 15	5,34-37,74	& THAMBOO
(g/planta) Majásia-D. Durian Inflorescência 18,17 (kg/ha)² Migéria Fruto 20 a 22 76 (kg/ha)² Migéria Fruto 20 a 22 14 (kg/ha)² Migéria Fruto 20 a 22 20 (kg/ha)² Migéria Fruto 20 a 22 70-80-110-80-180-160 (g/planta) Folfolos 7-10-14-17-20-22 70-80-90-280-240 (g/planta) Majásia 7-10-14-17-20-22 70-80-80-90-280-240 (g/planta) Majásia 7-10-14-17-20-22 70-80-80-90-280-240 (g/planta) Majásia 7-10-14-17-20-22 10-10-20-20-10 (g/planta) Majásia 1-10-14-17-20-22 10-10-20-20-10 (g/planta) Majásia-Serdang ¹ <		Malasia-Jerengau	Cacho	a 15	18,57-36,57	& THAMBOO
(kg/ha)² Nigéria Fruto 20 a 22 76 (kg/ha)² Nigéria Fruto 20 a 22 76 (kg/ha)² Nigéria Fruto 20 a 22 14 (kg/ha)² Nigéria fruto 20 a 22 14 (kg/hanta)² Nigéria froifolos 7-10-14-17-20-22 70-80-110-80-180-160 (g/planta) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 44-71-80-67-90-62-93-104 (g/planta) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 70-80-80-90-280-240 (g/planta) Malásia "Gabbage" 7-10-14-17-20-22 70-80-80-90-22-0-20-0 (g/planta) Malásia "Gabbage" 7-10-14-17-20-22 10-10-20-20-10 (g/planta) Malásia 7-10-14-17-20-22 10-10-20-20-10 (g/planta) Malásia 7-10-14-17-20-22 10-10-20-20-10 (g/planta) Malásia 7-10-14-17-20-22 10-10-20-20-10 (g/planta) Malásia 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-1-10-14-14-19 (g/planta)		Malásia-D. Durian	Inflorescência			
(kg/ha)² Nigéria Fruto 20 a 22 76 (kg/ha)² Nigéria Raífes 20 a 22 14 (kg/ha)² Nigéria favore 20 a 22 220 (kg/ha)² Nigéria favore 20 a 22 220 (g/planta) Malásia Folfolos 7-10-14-17-20-22 70-80-110-80-180-160 (g/planta) Malásia Ráquis 7-10-14-17-20-22 70-80-160-62-93-104 (g/planta) Nigéria Ráquis 7-10-14-17-20-22 70-80-80-90-62-93-104 (g/planta) Nigéria Ráquis 7-10-14-17-20-22 70-80-80-90-62-93-104 (g/planta) Nigéria 7-10-14-17-20-22 70-80-80-90-62-93-145-145-123-176 (g/planta) Nigéria 7-10-14-17-20-22 10-0-20-20-10-62-93-145-145-123-176 (g/planta) Nigéria 7-10-14-17-20-22 10-0-20-20-10-62-93-145-145-123-176 (g/planta) Nigéria 7-10-14-17-20-22 10-0-20-60-149-09-00 (g/planta) Nigéria 7-10-14-17-20-22 10-0-20-00-149-14-14-19 (g/planta) <			masculina	a 15	18,17	NG & THAMBOU (1967)
(kg/ha)² Nigéria Raízes 20 a 22 14 (kg/ha)² Nigéria frvore 20 a 22 14 (kg/ha)² Nigéria frvore 20 a 22 20 (kg/hanta) Nigéria Folíolos 7-10-14-17-20-22 70-80-110-80-180-160 (kg/hanta) Nalásia Folíolos 7-10-14-17-20-22 70-80-90-280-240 (kg/hanta) Nalásia Ráquis 7-10-14-17-20-22 70-80-80-90-280-240 (kg/hanta) Nigéria "Cabbage" 7-10-14-17-20-22 70-80-80-90-280-240 (kg/hanta) Nigéria "Cabbage" 7-10-14-17-20-22 10-10-20-0-00-0 (kg/hanta) Nigéria "Cabbage" 7-10-14-17-20-22 10-10-20-0-0 (kg/hanta) Nigéria 24-3,3-4,3-5,3-6,3-7,5-8,5-9,5 3-4-5-6-6,5-3-4-3 (kg/hanta) Malásia Copa 24-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-6-0-9-12-14-14-19 (kg/hanta) Malásia Copa 24-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-8-9-9-12-14-14-19 (kg/hanta) Malásia-Durian Polpa 10 a 15<	Ca (kg/ha) ²	Nigeria	Fruto	a	92	TINKER & SMILDE (1963)
(g/planta) Nigéria frvore 20 a 22 20 (g/planta) Folfolos 7-10-14-17-20-22 70-80-110-80-180-160 (g/planta) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 44-71-80-62-93-104 (g/planta) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 70-80-80-90-280-240 (g/planta) Malásia "Cabbage" 7-10-14-17-20-22 70-80-80-90-280-240 (g/planta) Malásia "Cabbage" 7-10-14-17-20-22 10-10-20-20-10 (g/planta) Migéria "Cabbage" 7-10-14-17-20-22 10-10-20-420-660-1490-900 (g/planta) Migéria "Cabbage" 7-10-14-17-20-22 14-0-20-420-660-1490-900 (g/planta) Malásia Estipe 7-10-14-17-20-22 14-0-20-420-660-1490-900 (g/planta) Malásia Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-137-157-181-287-319-376-438 (g/planta) Malásia-Durian¹ Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-8-9-12-14-14-19 (g/planta) Malásia-Serdang¹ Polpa 10 a 15 0,85-15,20	Ca (kg/ha) ²	Nigeria	Raizes	a 22	14	SMILDE
(g/planta) Folfolos 7-10-14-17-20-22 70-80-110-80-180-160 (g/planta) Malásia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 44-71-80-67-90-62-93-104 (g/planta) Nigéria Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 70-80-80-90-280-240 (g/planta) Malásia "Cabbage" 7-10-14-17-20-22 70-110-14/3-93-145-123-176 (g/planta) Nigéria "Cabbage" 7-10-14-17-20-22 10-10-20-20-10 (g/planta) Malásia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 3-4-5-6-6,5-3-4-3 (g/planta) Malásia Flecha 2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5 10-10-20-20-10 (g/planta) Malásia Flecha 2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5 6-137-157-181-287-319-376-438 (g/planta) Malásia Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-137-157-181-281-287-319-376-438 (g/planta) Malásia-Serdang Polpa 10 a 15 0,85-15,0 6-137-157-14-14-19 (g/planta) Malásia-Jerengau¹ Polpa 10 a 15 0,85-15,20 6-137-14,44 (g/planta) Malásia-Jer		Nigeria	Arvore	a	220	TINKER & SMILDE (1963)
(g/planta) Folios 7-10-14-17-20-22 70-80-110-80-180-160 (g/planta) Malásia 7-10-14-17-20-22 44-71-80-67-90-62-93-104 (g/planta) Nigéria 7-10-14-17-20-22 70-80-80-90-280-240 (g/planta) Nigéria 7-10-14-17-20-22 70-80-80-90-280-240 (g/planta) Malásia 1-10-14-17-20-22 10-10-143-93-145-145-123-176 (g/planta) Malásia 1-10-14-17-20-22 10-10-143-93-145-145-123-176 (g/planta) Malásia 1-10-14-17-20-22 10-10-143-93-145-145-123-176 (g/planta) Malásia 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 3-4-5-6-6,5-3-4-3 (g/planta) Malásia 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-13-15-181-287-319-376-438 (g/planta) Malásia Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-13-14-14-19 (g/planta) Malásia Polpa 10 a 15 0,85-15,20 (g/planta) Malásia-Serdang Polpa 10 a 15 0,31-14,44 (g/planta) Malásia-Serdang Polpa 10 a 15 0,31-14,44 (g/planta) Malási		•				
g/planta) Malâsia Folfolos 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 44-71-80-62-93-104 g/planta) Migéria Ráquis 7-10-14-17-20-22 70-80-80-90-280-240 (g/planta) Malâsia Râquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 79-110-143-93-145-145-123-176 (g/planta) Malâsia "Cabbage" 7-10-14-17-20-22 10-10-20-20-10 (g/planta) Malâsia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 3-4-5-6-6,5-3-4-3 (g/planta) Malâsia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-137-157-181-287-319-376-438 (g/planta) Malâsia Flecha 2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5 6-137-157-181-287-319-376-438 (g/planta) Malâsia-Serdang Polpa 10 a 15 1,70-14,84 (g/planta) Malâsia-Jerengau¹ Polpa 10 a 15 9,31-14,44 (g/planta) Malâsia-Jerengau¹ Polpa 10 a 15 3,29-14,44 (g/planta) Malâsia-Durian¹ Casca 10 a 15 9,31-14,44 (g/planta) Malâsia-Serdang¹ Casca 10 a 15 0,17-3,77		Foliolos	Folfolos	7-10-14-17-20-22	70-80-110-80-180-160	TINKER & SMILDE (1963)
/g/planta) Nigéria Ráquis 7-10-14-17-20-22 70-80-80-90-280-240 /g/planta) Malásia Ráquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 79-110-143-93-145-123-176 (g/planta) Nigéria "Cabbage" 7-10-14-17-20-22 10-10-20-20-10 (g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 3-4-5-6-6,5-3-4-3 (g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5 66-137-157-181-287-319-376-438 (g/planta) Malásia Flecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 66-137-157-181-287-319-376-438 (g/planta) Malásia-Serdang Polpa 10 a 15 1,70-14,84 (g/planta) Malásia-Jerengau Polpa 10 a 15 0,31-14,44 (g/planta) Malásia-Jerengau Polpa 10 a 15 0,31-14,44 (g/planta) Malásia-Jerengau Polpa 10 a 15 0,31-14,44 (g/planta) Malásia-Serdang 10 a 15 0,31-14,44 (g/planta) Malásia-Serdang 10 a 15 0,31-14,44 (g/planta) Malásia-Serdang<		Malâsia	Foliolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	44-71-80-67-90-62-93-104	NG et al. (1968a)
g/planta) Malásia Ráquis 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 79-110-143-93-145-123-176 NG et al. (1968a TINKER & SMILDE Cabbage" 7-10-14-17-20-22 10-10-20-20-10 NG et al. (1968a TINKER & SMILDE Cabbage" 7-10-14-17-20-22 10-10-20-20-10 NG et al. (1968a TINKER & SMILDE Cabbage" 7-10-14-17-20-22 140-250-420-660-1490-900 NG et al. (1968a TINKER & SMILDE Cabbage" 7-10-14-17-20-22 140-250-420-660-1490-900 TINKER & SMILDE Cabbage" 7-10-14-17-20-22 140-250-420-660-1490-900 NG et al. (1968a TINKER & SMILDE Cabbage" 7-10-14-17-20-22 140-250-420-660-1490-900 NG et al. (1968a TINKER & SMILDE Cabbage" 7-10-14-17-20-22 140-250-420-660-1490-900 NG et al. (1968a TINKER & SMILDE Cabbage" NG Et al. (1968a TINKER & SMILDE Cabbage Cabbag		Nigeria	Ráquis	7-10-14-17-20-22	70-80-80-90-280-240	TINKER & SMILDE (1963)
(g/planta) Nigéria "Cabbage" 7-10-14-17-20-22 10-10-20-20-10 TINNER & SMILLDE (g/planta) Malásia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 3-4-5-6-6,5-3-4-3 NG et al. (1968a (g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5 66-137-157-181-287-319-376-438 NG et al. (1968a (g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5 66-137-157-181-287-319-376-438 NG et al. (1968a (g/planta) Malásia-D. Durian Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 132-192-234-175-253-225-234-303 NG et al. (1968a (g/planta) Malásia-Serdang Polpa 10 a 15 0,85-15,20 0,85-15,20 (g/planta) Malásia-Jerengau Polpa 10 a 15 0,31-14,44 NG & THAMBOO (19 (g/planta) Malásia-Jerengau Polpa 10 a 15 0,31-14,44 NG & THAMBOO (19 (g/planta) Malásia-Jerengau Polpa 10 a 15 0,31-14,44 NG & THAMBOO (19 (g/planta) Malásia-Serdang 10 a 15 0,17-3,77 0,17-3,77 0,17-3,77 <		Malāsia	Rāquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	79-110-143-93-145-145-123-176	NG et al. (1968a)
(g/planta) Malásia "Cabbage" 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 3-4-5-6-6,5-3-4-3 (g/planta) Nigéria Estipe 7-10-14-17-20-22 140-250-420-660-1490-900 (g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5 66-137-157-181-287-319-376-438 (g/planta) Malásia Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 66-137-157-181-287-319-376-438 (g/planta) Malásia-D. Durian¹ Polpa 10 a 15 1,70-14,84 (g/planta) Malásia-Jerengau¹ Polpa 10 a 15 6,85-15,20 (g/planta) Malásia-Jerengau¹ Polpa 10 a 15 5,29-14,68 (g/planta) Malásia-Serdang¹ Loasca 10 a 15 0,31-14,44 (g/planta) Malásia-Serdang¹ Loasca 10 a 15 0,17-3,77		Nigeria	"Cabbage"	7-10-14-17-20-22	10-10-20-20-10	TINKER & SMILLUE (1963)
(g/planta) Nigéria Estipe 7-10-14-17-20-22 140-250-420-660-1490-900 (g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5 66-137-157-181-287-319-376-438 (g/planta) Malásia-D. Durian Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-8-9-9-12-14-14-19 (g/planta) Malásia-Serdang Polpa 10 a 15 0,85-15,20 (g/planta) Malásia-Jerengau Polpa 10 a 15 0,85-15,20 (g/planta) Malásia-D. Durian Casca 10 a 15 0,31-14,44 (g/planta) Malásia-Serdang 10 a 15 0,31-14,44 (g/planta) Malásia-Serdang 10 a 15 0,17-3,77		Malasia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	3-4-5-6-6,5-3-4-3	NG et al. (1968a)
(g/planta) Malásia Estipe 2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5 66-137-157-181-287-319-376-438 NG et al. (196		Nigeria	Estipe	7-10-14-17-20-22	140-250-420-660-1490-900	TINKER & SMILDE (1963)
(g/planta) Malásia-D. Durian Flecha 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 6-8-9-9-12-14-14-19 NG et al. (190 e		Malasia	Estipe	2,4-3,3-4,3-5,3-6,4-7,5-8,5-9,5	66-137-157-181-287-319-376-438	et al.
(g/planta) Malásia Copa 2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5 132-192-234-175-253-225-234-303 NG et al. (190 (g/planta) Malásia-D. Durian Polpa 10 a 15 1,70-14,84 NG & THAMBOO (g/planta) Malásia-Jerengau Polpa 10 a 15 5,29-14,68 NG & THAMBOO (g/planta) Malásia-D. Durian Casca 10 a 15 0,31-14,44 NG & THAMBOO (g/planta) Malásia-Serdang Casca 10 a 15 0,17-3,77 NG & THAMBOO (g/planta) Malásia-Serdang Casca 10 a 15 0,17-3,77		Malasia	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	6-8-9-9-12-14-14-19	
(g/planta) Malásia-D. Durian¹ Polpa 10 a 15 1,70-14,84 NG & THAMBOO (g/planta) Malásia-Serdang¹ Polpa 10 a 15 0,85-15,20 NG & THAMBOO (g/planta) Malásia-Jerengau¹ Polpa 10 a 15 0,31-14,44 NG & THAMBOO (g/planta) Malásia-D. Durian¹ Casca 10 a 15 0,17-3,77 NG & THAMBOO (g/planta) Malásia-Serdang¹ Casca 10 a 15 0,17-3,77 NG & THAMBOO		Malasia	Copa	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	132-192-234-175-253-225-234-303	
(g/planta) Malásia-Serdang ¹ Polpa 10 a 15 0,85-15,20 NG & TAHMBOO (g/planta) Malásia-Jerengau ¹ Polpa 10 a 15 0,31-14,44 NG & THAMBOO (g/planta) Malásia-D. Durian ¹ Casca 10 a 15 0,17-3,77 NG & THAMBOO (g/planta) Malásia-Serdang ¹ Casca 10 a 15 0,17-3,77 NG & THAMBOO		Malasia-D. Durlan		10 a 15	1,70-14,84	& THAMBOO
(g/planta) Malásia-Jerengau ¹ Polpa 10 a 15 5,29-14,68 NG & THAMBOO (g/planta) Malásia-D. Durlan ¹ Casca 10 a 15 0,31-14,44 NG & THAMBOO (g/planta) Malásia-Serdang ¹ Casca 10 a 15 0,17-3,77		Malasia-Serdang		10 a 15	0,85-15,20	& TAHMBOO
(g/planta) Malásia-D. Durian Casca $10 a 15$ $0,31-14,44$ NG & THAMBOO (g/planta) Malásia-Serdang Casca $10 a 15$ $0,17-3,77$		Malasia-Jerengau		ø	5,29-14,68	& THAMBOO
(g/planta) Malásia-Serdang Casca 10 a 15 0,17-3,77 NG & THAMBOU		Malásia-D. Durian		Ø	0,31-14,44	& THAMBOU
		Malasia-Serdang ¹		Ø	0,17-3,77	& THAMBOO

Tabela 3 - Continuação

(g/planta)	Malásta-Jerengau ^l	Casca	10 a 15	0,45-1,03	NG & THAMBOO (1967)
	Malásia-D. Durian 1	Amendoa	10 a 15	0,58-3,35	NG & THAMBOO (1967)
Mg (g/planta)	Malásia-Serdang ^l	Amendoa	10 a 15	0,17-2,62	NG & THAMBOO (1967)
Mg (g/planta)	Malâsia-Jerengau ^l	Amendoa	10 a 15	1,45-3,08	NG & THAMBOO (1967)
(g/planta)	Malasia-D. Durian	Espigueta	10 a 15	1,67-8,23	NG & THAMBOO (1967)
(g/planta)	Malasia-Serdang	Espigueta	10 a 15	1,13-5,25	NG & THAMBOO (1967)
	Malasia-Jerengau	Espigueta	10 a 15	2,92-10,13	NG & THAMBOO (1967)
Mg (g/planta)	Malasia-D. Durian	Pedúnculo	10 a 15	0,31-1,75	NG & THAMBOO (1967)
(g/planta)	Malasia-Serdang ¹	Pedúncu1o	10 a 15	0,33-1,58	NG & THAMBOO (1967)
(g/planta)	Malasia-Jerengau	Pedúnculo	10 a 15	0,39-1,60	NG & THAMBOO (1967)
(g/planta)	Malasia-D. Durian	Cacho	10 a 15	6,28-37,68	NG & THAMBOO (1967)
Mg (g/planta)	Malasia-Serdang ^l	Cacho	10 a 15	2,58-35,37	NG & THAMBOO (1967)
(g/planta)	Malásia-Jerengau ^l	Cacho	10 a 15	13,56-28,20	NG & THAMBOO (1967)
(g/planta)	Malásia-D. Durian	Inflorescência			
		masculina	10 a 15	12,0	NG & THAMBOO (1967)
Mg (kg/ha) ²	Nigeria	Frutos	20 a 22	65	TINKER & SMILDE (1963)
	Nigeria	Raizes	20 a 22	30	TINKER & SMILDE (1963)
(kg/ha)²	Nigéria	Árvores	20 a 22	230	TINKER & SMILDE (1963)
S (g/planta)	Malásia	Foliolos	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	25-34-67-52-72-70-85-78	NG et al. (1968a)
(g/planta)	Malāsia	Rāquis	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	75-89-137-121-184-190-196-145	NG et al. (1968a)
	Malāsta	Flecha	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	3-3-5-5-9-10-18-10	NG et al. (1968a)
S (g/planta)	Malāsia	"Cabbage"	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	1-1-2-3-2-1,5-2-2	NG et al. (1968a)
S (g/planta)	Malasia	Copa	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	104-127-210-183-267-271-301-234	NG et al. (1968a)
S (g/planta)	Malāsia	Estipe	2,4-3,3-4,3-5,3-6,3-7,5-8,5-9,5	57-160-258-375-488-382-464-1110	NG et al. (1968a)
Cu (mg/planta)	Malâsia	Folfolos	1,2-3,3-5,3-8,6-10,7-13,3	21-143-198-255-273-333	NG et al. (1968a)
Cu (mg/planta)	Malasta	Ráquis	1,2-3,3-5,3-8,6-10,7-13,3	38-321-381-565-514-614	NG et al. (1968a)
Cu (mg/planta)	Malasia	Felcha &			
		"Cabbage"	1,2-3,3-5,3-8,6-10,7-13,3	18-32-78-106-97-123	NG et al. (1968a)
Cu (mg/planta)	Malāsia	Estipe	1,2-3,3-5,3-8,6-10,7-13,3	22-896-1086-2046-3671-3668	NG et al. (1968a)

Nutriente	Local	Componente	Idade (anos)	Conteudo	Autor(es)
Cu (mg/planta)	Malasia-D. Durian	Polpa	10 a 15	9,06	NG & THAMBOO (1967a)
Cu (mg/planta)	Malasia-D. Durian	Casca	10 a 15	41,2	NG & THAMBOO (1967a)
Cu (mg/planta)	Malasia-D. Durian	Amendoa	10 a 15	20,0	NG & THAMBOO (1967a)
Cu (mg/planta)	Malasia-D. Durian	Espigueta	10 a 15	26,3	NG & THAMBOO (1967a)
Cu (mg/plnata)	Malásia-D. Durian	Pedúncu1o	10 a 15	10,8	NG & THAMBOO (1967a)
B (mg/planta)	Malásia	Folfolos	1,2-3,3-5,3-8,6-10,7-13,3	31-228-282-507-458-514	NG et al. (1968a)
B (mg/planta)	Malásia	Rāquis	1,2-3,3-5,3-8,6-10,7-13,3	41-333-378-666-572-615	NG et al. (1968a)
B (mg/planta)	Malasia	Felcha &			
		"Cabbage"	1,2-3,3-5,3-8,6-10,7-13,3	11-26-53-72-76-85	NG et al. (1968a)
B (mg/planta)	Malāsia	Estipe	1,2-3,3-5,3-9,6-10,7-13,3	16-541-925-1650-2591-3291	NG et al. (1968a)
B (mg/planta)	Malasia-D. Durlan	Polpa	10 a 15	28,3	NG & THAMBOO (1967)
B (mg/planta)	Malásia-D. Durian	Casca	10 a 15	10,7	NG & THAMBOO (1967)
	Malásia-D. Durian	Amendoa	10 a 15	8,9	NG & THAMBOO (1967)
	Malasia-D. Durian	Espigueta	10 a 15	27,1	NG & THAMBOO (1967)
B (mg/planta)	Malásia-D. Durian	Peduncu10	10 a 15	9,1	NG & THAMBOO (1967)
Fe (mg/planta)	Malásia	Folfolos	1,2-3,3-5,3-8,6-10,7-13,3	229-1462-3063-2962-3877-3804	NG et al. (1968a)
Fe (mg/planta)	Malásia	Rāquis	1,2-3,3-5,3-8,6-10,7-13,3	544-4253-4076-2741-2886-3562	NG et al. (1968a)
Fe (mg/planta)	Malásia	Flecha &			
		"Cabbage"	1,2-3,3-5,3-8,6-10,7-13,3	57-124-292-445-448-572	NG et al. (1968a)
Fe (mg/planta)	Malasia	Estipe	1,2-3,3-5,3-8,6-10,7-13,3	498-24186-27423-55045-61321-98988	NG et al. (1968a)
Fe (mg/planta)	Malásia-D. Durian	Polpa	10 a 15	264	NG & THAMBOO (1967)
Fe (mg/planta)	Malasia-D. Durian	Casca	10 a 15	365	NG & THAMBOO (1967)
Fe (mg/planta)	Malasia-D. Durian	Amendoa	10 a 15	60,5	NG & THAMBOO (1967)
Fe (mg/planta)	Malasia-D. Durian	Espigueta	10 a 15	214	NG & THAMBOO (1967)
Fe (mg/planta)	Malásia-D. Durian	Pedúnculo	10 a 15	31,7	NG & THAMBOO (1967)
Mn (mg/planta)	Malasia	Foliolos	1,2-3,3-5,3-8,6-10,7-13,3	481-7616-16365-12632-8886-16636	NG et al. (1968b)
(mo/m1 cmto)	a to a	Banife	1,2-3,3-5,3-8,6-10,7-13,3	195-4093-6747-6762-4872-7825	NG et al, (1968b)

Tabela 3 - Continuação

Malāsia Flecha & Malāsia "Cabbage" 1,2-3,3-5,3-8,6-10,7-13,3 Malāsia-D. Durian Polpa 10 a 15 Malāsia-D. Durian Amēndoa 10 a 15 Malāsia-D. Durian Bspigueta 10 a 15 Malāsia-D. Durian Bedunculo 10 a 15 Malāsia Folfolos 1,2-3,3-5,3-8,6-10,7-13,3 Malāsia Flecha & 1,2-3,3-5,3-8,6-10,7-13,3 Malāsia Estipe 1,2-3,3-5,3-8,6-10,7-13,3 Malāsia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 Malāsia-D. Durian Casca 10 a 15 Malāsia-D. Durian Amēndoa 10 a 15 Malāsia-D. Durian Espigueta 10 a 15	Nutriente	Local	Componente	Idade (anos)	Conteúdo	Autor(es)
(mg/planta) Malásia 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Améndoa 10 a 15 (mg/planta) Malásia-D. Durian Améndoa 10 a 15 (mg/planta) Malásia-D. Durian Pedúnculo 10 a 15 (mg/planta) Malásia Folfolos 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Flecha & 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Flecha & 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Casca 10 a 15 (mg/planta) Malásia-D. Durian Améndoa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15	Mn (mg/planta)	Malásia	Flecha &			
(mg/planta) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 10 a 15 (mg/planta) Malásia-D. Durian Amêndoa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15 (mg/planta) Malásia-D. Durian Pedúnculo 10 a 15 (mg/planta) Malásia Folfolos 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Flecha & 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 10 a 15 (mg/planta) Malásia-D. Durian Amêndoa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15			"Cabbage"	1,2-3,3-5,3-8,6-10,7-13,3	61-430-862-1060-819-1302	NG et al. (1968b)
(mg/planta) Malásia-D. Durian Polpa 10 a 15 (mg/planta) Malásia-D. Durian Casca 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15 (mg/planta) Malásia-D. Durian Pedúnculo 10 a 15 (mg/planta) Malásia Folfolos 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Flecha & 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Estipe 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 10 a 15 (mg/planta) Malásia-D. Durian Amêndoa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15	Mn (mg/planta)		Estipe	1,2-3,3-5,3-8,6-10,7-13,3	55-7080-10963-15611-15949-25095	NG & THAMBOO (1968b)
(mg/planta) Malásia-D. Durian Amêndoa 10 a 15 (mg/planta) Malásia-D. Durian Bspigueta 10 a 15 (mg/planta) Malásia-D. Durian Pedúnculo 10 a 15 (mg/planta) Malásia Folfolos 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Flecha & 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15	Mn (mg/Planta)		Polpa	10 a 15	37,7	NG & THAMBOO (1967)
(mg/planta) Malásia-D. Durian Amendoa 10 a 15 (mg/planta) Malásia-D. Durian Pedúnculo 10 a 15 (mg/planta) Malásia Folfolos 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Flecha & 12,-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 10 a 15 (mg/planta) Malásia-D. Durian Amendoa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15	Mn (mg/planta)		Casca	10 a 15	93,3	NG & THAMBOO (1967)
(mg/planta) Malásia-D. Durian Espigueta 10 a 15 (mg/planta) Malásia-D. Durian Pedúnculo 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Flecha & 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa (mg/planta) Malásia-D. Durian Polpa (mg/planta) Malásia-D. Durian Amêndoa (mg/planta) Malásia-D. Durian Espigueta (mg/planta) Malásia-D. Durian Espigueta (mg/planta) Malásia-D. Durian Espigueta (mg/planta) Malásia-D. Durian Espigueta	Mn (mg/planta)	Malasia-D. Durian	Amendoa	10 a 15	275	NG & THAMBOO (1967)
(mg/planta) Malásia-D. Durian Pedúnculo 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Faquis 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Fatipe 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 10 a 15 (mg/planta) Malásia-D. Durian Amêndoa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15	Mn (mg/planta)		Espigueta	10 a 15	122	NG & THAMBOO (1967)
(mg/planta) Malásia Folfolos 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Flecha & 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durían Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durían Polpa 10 a 15 (mg/planta) Malásia-D. Durían Amêndoa 10 a 15 (mg/planta) Malásia-D. Durían Espigueta 10 a 15	Mn (mg/planta)	Malásia-D. Durian	Pedúnculo	10 a 15	14,7	NG & THAMBOO (1967)
(mg/planta) Malásia Folfolos 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia Flecha & 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durían Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durían Polpa 10 a 15 (mg/planta) Malásia-D. Durían Amêndoa 10 a 15 (mg/planta) Malásia-D. Durían Espigueta 10 a 15						
(mg/planta) Malásia Ráquis 12,-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durian Polpa 10 a 15 (mg/planta) Malásia-D. Durian Amêndoa 10 a 15 (mg/planta) Malásia-D. Durian Amêndoa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15	Zn (mg/planta)	Malasia	Foliolos	1,2-3,3-5,3-8,6-10,7-13,3	37-266-524-504-367-429	NG et al. (1968b)
(mg/planta) Malásia Flecha & "Cabbage" 1,2-3,3-5,3-8,6-10,7-13,3 (mg/planta) Malásia-D. Durían Polpa 10 a 15 (mg/planta) Malásia-D. Durían Amêndoa 10 a 15 (mg/planta) Malásia-D. Durían Amêndoa 10 a 15 (mg/planta) Malásia-D. Durían Espigueta 10 a 15	Zn (mg/planta)	Malásia	Rāquis	12,-3,3-5,3-8,6-10,7-13,3	43-396-459-698-485-450	NG et al. (1968b)
Malásia 1,2-3,3-5,3-8,6-10,7-13,3 Malásia-D. Durian Polpa 10 a 15 Malásia-D. Durian Amêndoa 10 a 15 Malásia-D. Durian Espigueta 10 a 15	Zn (mg/planta)	Malasia	Flecha &			
Malásia Estipe 1,2-3,3-5,3-8,6-10,7-13,3 Malásia-D. Durian Polpa 10 a 15 Malásia-D. Durian Amêndoa 10 a 15 Malásia-D. Durian Espigueta 10 a 15			"Cabbage"	1,2-3,3-5,3-8,6-10,7-13,3	163-123-306-269-152-240	NG et al. (1968b)
Malásia-D. Durian Polpa 10 a 15 Malásia-D. Durian Amêndoa 10 a 15 Malásia-D. Durian Espigueta 10 a 15	Zn (mg/planta)	Malāsia	Estipe	1,2-3,3-5,3-8,6-10,7-13,3	65-2323-5162-8021-8256-17266	NG et al,)1968b)
(mg/planta) Malásia-D. Durian Amêndoa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15	Zn (mg/planta)	Malasia-D. Durtan	Polpa	10 a 15	36,8	NG & THAMBOO (1967)
(mg/planta) Malásia-D. Durian Amêndoa 10 a 15 (mg/planta) Malásia-D. Durian Espigueta 10 a 15		Malásia-D. Durian	Casca	10 a 15	11,7	NG & THAMBOO (1967)
(mg/planta) Malásia-D. Durian Espigueta 10 a 15	Zn (mg/planta)	Malásta-D. Durian	Amendoa	10 a 15	33,6	NG & THAMBOO (1967)
	Zn (mg/planta)	Malásia-D. Durian	Espigueta	10 a 15	81,1	NG & THAMBOO (1967)
Malasia-D. Durian Pedunculo 10 a 15	Zn (mg/planta)	Malasia-D. Durian	Peduncu10	10 a 15	9,8	NG & THAMBOO (1967)

^{1 -} Referente a valores mínimos e máximos

^{2 -} Considerando 148 palmeiras por hectare

Uma comparação das quantidades extraídas de macronutrientes com base na estimativa de 1 t de cachos frescos, foi realizada por NG (1972), utilizando dados obtidos por vários pesquisadores. Os resultados mostraram um consenso de que os elementos mais exportados foram potássio e nitrogênio.

A exportação de micronutrientes mostrou que as quantidades removidas pelos cachos frescos, assumindo uma estimativa de 1 t/cachos/ha/ano, foram baixas, ou seja: 24,6 gramas de Fe, 15,1 g de Mn, 4,9 g de Zn, 4,7 g de Cu, 2,1 g de B e 0,08 g de Mn (NG, 1972):

Uma comparação entre as quantidades de nutrientes extraidas por ano de produção em algumas culturas perenes tropicais foi realizada por NG & THAMBOO (1967). Altas produções foram assumidas para as culturas, ficando evidente que as maiores quantidades exportadas dos nutrientes foram proporcionados pelo dendezeiro, com exceção do coqueiro. Estes resultados demonstram a prioridade que se deve dar à necessidade de um suprimento maior de fertilizantes na cultura do dendezeiro, quando comparada com as demais culturas, no exemplo citado.

De acordo com a revisão de literatura ficou evidente que há diferenças acentuadas entre os resultados obtidos pelos autores citados, sendo perfeitamente compreensível devido a ação de vários fatores envolvidos, tais como: variedades, solo, fertilização, clima, práticas de manejo, etc.

3. MATERIAL E MÉTODOS

3.1. Características da área experimental

3.1.1. Localização, clima e solo da área experimental

As plantas de dendezeiro (*Elaeis guineensis*, Jacq.) utilizadas foram do híbrido comercial Tenera (Dura x Psifera), pertencentes à Companhia Real Agroindustrial (CRAI), localizada no município de Tailândia - Pará.

A CRAI, situa-se ao nordeste do Estado do Pará entre as coordenadas geográficas 2°00' e 4°00'S de latitude sul e 50°00' e 48°00' de longitude WGR, entre os rios Mojú e Acará (Figura 1).

O clima onde se encontra estabelecida a plantação, pela classificação de Köppen, é do tipo Ami que, segundo BASTOS (1972), caracteriza-se como clima tropical chuvoso sem variação térmica estacional apresentando total pluviométrico anual elevado, com mês menos chuvoso inferior a 60 mm e com moderado período de estiagem.

No período de 1983 a 1991, a temperatura média anual foi de 26°C e as médias das temperaturas mínimas e máximas variaram de 21°C e 32,5°C, respectivamente. A média da umidade relativa do ar nesse período, foi de 83%.

A Figura 2, representa o comportamento da precipitação pluviométrica no período de 1983-91. Verifica-se que a média anual foi de 2.400 mm registrando valores máximos e mínimos em torno de 3200 e 1500 mm, respectivamente.

A distribuição das chuvas na área onde se desenvolveu o trabalho define duas épocas, uma chuvosa de dezembro a maio e outra menos chuvosa de junho a novembro. No período 1983-91, constatou-se que o trimestre mais chuvoso foi fevereiro/março/abril, enquanto o menos chuvoso foi agosto/setembro/outubro.

As formas de relevo preponderante na área revelam topografia plana, com declives entre 0 a 3% e ligeiramente ondulada, com declive de 3 a 8%, favorável à instalação de plantações de dendê que, em função do transporte frequente e pesado da produção, necessita de área com essa característica. Uma rede de pequenos igarapés recorta as parcelas da plantação, amenizando um pouco os efeitos dos déficits hídricos anuais que ocorrem.

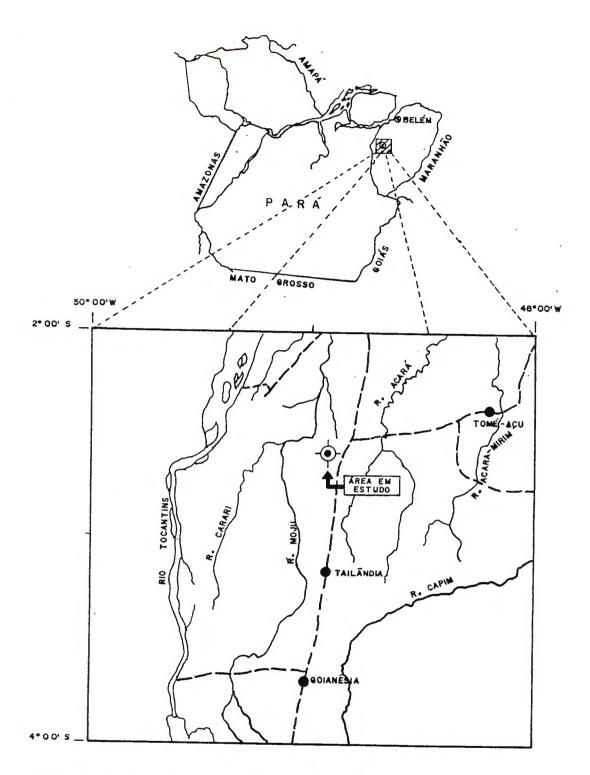


Figura 1. Localização geográfica da área experimental no Estado do Pará.

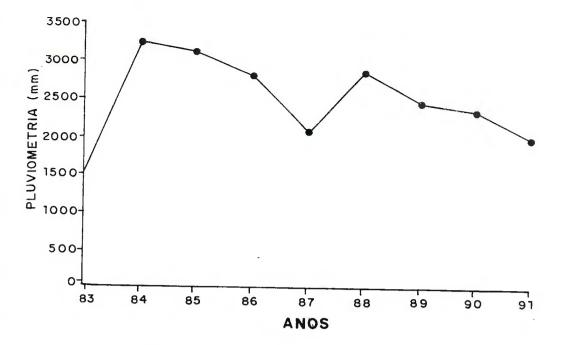


Figura 2. Precipitação pluviométrica anual na plantação comercial da Companhia Real Agroindustrial no período de 1983 a 1991.

Os solos que predominam na área de acordo com o levantamento efetuado por SILVA et al. (1988), são do grupo dos Latossolos Amarelo, álicos, fortemente lixiviados, com baixa fertilidade natural e teor de argila que aumenta com a profundidade.

Foram retiradas amostras compostas de 4 subamostras de solo das entrelinhas de plantio, para cada idade
do dendezeiro, no ano de 1991 (época da coleta das plantas)
na profundidade de -30cm. Estas amostras foram submetidas à
análise química no Laboratório do Departaento de Ciência do
Solo da Escola Superior de Agricultura "Luiz de Queiroz",
utilizando-se a metodologia descrita por RAIJ et al. (1987),
cujos resultados estão contidos na Tabela 4. As análises
físicas do solo foram realizadas no Centro de Pesquisa
Agroflorestal da Amazônia Oriental CPATU/ EMBRAPA.

Tabela 4. Análise química e física das amostras de solo das áreas utilizadas na profundidade de 0-30 cm.

Caracteríticas		Ic	dade d a s	s planta	as (anos)	
Car actericicas	2	3	4	5	6	7	8
pH (CaCl ₂)	4,3	4,4	4,1	4,0	4,0	4,3	4,0
			me	eq/100 (_w_₂		
K*	0,07	0,06	0,05	0,07	0,05	0,05	0,06
Ca*	0,7	0,7	0,9	0,8	0,7	0,7	0,6
Mg*	0,4	0,2	0,2	0,3	0,3	0,3	0,3
Al	0,4	0,3	0,3	0,5	0,8	0,4	0,6
H+A1**	3,4	2,8	3,1	3,8	3,4	2,6	3,4
SB	1,17	0,96	1,15	1,17	1,05	1,05	0,96
СТС	4,6	3,8	4,3	5,0	4,5	3,7	4,4
			.1	h∂∖cw _æ			
₽*	4	6	5	6	6	6	8
				%			
٧	24	24	26	. 22	22	27	20
M.O.***	1,6	2,3	1,5	1,9	2,0	2,1	1,8
Areia grossa	45	32	50	37	38	34	51
Areia fina	28	30	19	31	21	32	23
Silte	4	16	8	10	8	10	6
Argila	23	22	23	22	33	24	20

^{*} extraídos com resina trocadora de ions

^{**} método SMP

^{***} método colorimétrico.

3.2. Amostragem das palmeiras

3.2.1. Amostragem no campo

As plantas foram cultivadas no espaçamento de 9 m, em triângulo equilátero, perfazendo um "stand" de 143 plantas/ha. A leguminosa Pueraria phaseoloides é utilizada como cobertura do solo em toda a plantação da CRAI. As informações sobre as idades, parcelas, produções e adubações utilizadas no ano da amostragem, ou seja em 1991, estão contidas na Tabela 5. É importante ressaltar que não foi possível levantar um histórico completo da adubação na plantação.

Tabela 5. Idades, parcelas, produções e adubações utilizadas nos dendezeiros amostrados.

Idade	Parcela	Produção (t c/ha)*		Aduba	ação (d	g/plant	a)	
(anos)			N	P ₂ 0 ₅	K <u>=</u> 0	Mg	S	H ₃ BO ₃
2	A13		35	60	60	_	24	_
3	G ₂₅	1,5	18	77*	k 154	_	-	_
4	G _{≈≤}	7,0	56	115	300	60	45	-
5	G _{≥⊙}	9,0	9 7	336	240	60	45	_
6	$D_{\Xi\Xi}$	15,0	135	470	335	77	58	-
7	C7 e B1	19,0	135	470	335	102	. 58	50
8	B ₃₂ e B ₄₀	20,0	160	384	324	68	52	60

Fonte: CRAI (Companhia Real Agroindustrial)

^{*} em toneladas de cachos frescos por hectare

^{**} aplicação de 500 kg/ha de fosfino.

Na seleção das palmeiras utilizou-se alguns critérios, visando coletar plantas mais homogêneas, os quais foram: palmeiras localizadas, de preferência, na mesma parcela, representativas da idade, uniformes, bem desenvolvidas, nutridas, sadias e com bom rendimento.

Nos dendezeiros com 7 e 8 anos de idade, plantios 1984 e 1983 respectivamente os mais vélhos da plantação, não foi possivel coletar plantas na mesma parcela, porém os demais critérios com vistas a homogeneização foram preenchidos.

Identificadas as palmeiras, procedeu-se à mensuração da circunferência do coleto e a altura da planta medida desde a base da folha 33, preconizada por SURRE (1979) e JACQUEMARD (1979), a qual apresenta a vantagem de corresponder a altura do cacho maduro a ser colhido. Esssas variáveis serviram como critérios para a seleção das palmeiras que representassem a média da parcela, e consequentemente, com desenvolvimento uniforme, visando reduzir a heterogeneidade.

Foram amostradas quatro palmeiras para cada idade, sendo coletados os seguintes componentes: folíolos, pecíolos, ráquis, "cabbage", flechas, estipe, inflorescências masculinas, pedúnculos, espiguetas e frutos.

3.2.1.1. Foliolos

Selecionada a palmeira, realizou-se a remoção das folhas, as quais foram cortadas, uma de cada vez, com cinzel, iniciando-se das mais velhas para as mais novas.

Todas as folhas eram estendidas em lonas, contadas e empilhadas. Em seguida procedeu-se à coleta dos folíolos, sendo retirados da base, do meio e da extremidade da folha, três folíolos de cada lado. Os folíolos foram agrupados, pesados e formaram uma amostra composta representativa de todos os folíolos da palmeira. Esta amostra foi enviada ao laboratório onde procedeu-se ao corte dos folíolos em pedaços de 10 cm da sua base, do meio e extremidade formando portanto, uma sub-amostra. Deste componente foram removidas as nervuras centrais e laterais.

3.2.1.2. Ráquis e peciolos

TOTOCELLE CELLE COLCECTOCCOCCECTOCCECTOCC

Retirados os folíolos, realizou-se a coleta do ráquis, tendo-se o cuidado de separá-los do percíolo. Obtido o peso fresco total efetuou-se o corte desse componente, correspondente à cada folha, retirando-se amostras da extremidade, da parte mediana e da base. Estes pedaços frescos foram agrupados, pesados e enviados ao laboratório onde foi retirada uma sub-amostra. Procedimento semelhante foi realizado com os pecíolos.

3.2.1.3. Frutos, espiguetas e pedúnculos

Os cachos foram coletados após a retirada das folhas. Todos os cachos da palmeira, a partir do terceiro ano, foram cortados e um cacho maduro representativo foi

selecionado e enviado ao laboratório onde procedeu-se à separacão em frutos, espiquetas e pedúnculos. Inicialmente amostras contendo frutos da base, da parte média e do ápice do cacho foram coletadas e agrupadas formando uma amostra composta. Procedimento semelhante foi realizado com espiguetas e pedúnculos, para a obtenção de uma amostra composta representativa. No cálculo do conteúdo de nutrientes para frutos, espiguetas e pedúnculos (partes do cacho) foram considerados o número de cachos produzidos anualmente em dois experimentos de fertilização, que estão sendo conduzidos na mesma plantação. Deste modo, o conteúdo desses componentes foi estimado multiplicando-se a concentração e o peso matéria seca pelo número de cachos produzidos anualmente, por cada planta, ou seja: para o terceiro ano - 6 cachos, quarto e quinto - 15 cachos, no sexto - 17, sétimo - 20 e no oitavo ano - 22 cachos.

3.2.1.4. Inflorescências masculinas

As inflorescências masculinas foram coletadas no estádio de antese e, à exemplo dos frutos, espiguetas e pedúnculos, somente nas palmeiras a partir do terceiro ano de idade. De cada planta, foi retirada uma inflorescência representativa e remetida ao laboratório onde procedeu-se à retirada das espigas da base, da parte média e extremidade para compor a amostra composta. Em virtude de não se dispor de levantamentos precisos do número de inflorescencias

masculinas produzidas anualmente nas condições da plantacão, no cálculo do conteúdo de nutrientes, o número de inflorescências masculinas foi baseado no trabalho de BREURE (1987). Desse modo, para a estimativa do conteúdo de nutrientes nesse componente, multiplicou-se a concentração de cada elemento pelo peso da matéria seca e pelo número de inflorescências produzidas em cada ano. Logo, no terceiro ano o número de inflorescências masculinas considerado foi 2, no quarto e quinto - 5, no sexto - 8, no sétimo - 10 e no oitavo ano - 11.

3.2.1.5. Flechas

As flechas foram retiradas das palmeiras, após o corte do estipe, consistindo de 3 a 4 folhas não abertas localizadas no centro da copa. Nas flechas, os folíolos e ráquis foram agrupados, pesados e enviados ao laboratório onde procedeu-se ao corte, como foi feito com os outros componentes, formando-se uma amostra composta.

3.2.1.6. "Cabbage"

A "cabbage" ou ponto de crescimento situa-se no ápice do estipe, sendo constituído por tecidos bastante suculentos em forma de repolho. Foi coletado após o corte das flechas, pesado e enviado ao laboratório onde uma amostra da base, do centro e extremidade foram retiradas, agrupadas, formando uma amostra composta.

3.2.1.7. Estipe

Foi a última parte a ser coletada. Uma amostra com a espessura de 10 cm no formato de anel da base, do meio e da extremidade do estipe foram retiradas e enviadas ao laboratório onde formou-se uma sub-amostra composta contendo duas porções, uma interna, de tecido mais macio, e outra externa, de tecido mais duro. Na porção externa do estipe foram incluídos alguns restos da bainha das folhas.

3.3. Tratamento das amostras no laboratório

O material após a limpeza com água destilada foi acondicionado em saco de papel e colocado em estufa com circulação forçada de ar na temperatura de 65-70°C, até atingir peso constante. Após a determinação do peso da matéria seca, procedeu-se à moagem do material.

3.4. Análise química das palmeiras

As determinações dos nutrientes (N, P, K, Ca, Mg, S, B, Cu, Fe, Mn e Zn) foram realizadas no laboratório de plantas do Departamento de Ciência do Solo da ESALQ, seguindo-se os métodos descritos em SARRUGE & HAAG (1974). O nitrogênio foi determinado pelo método Kjeldahl; o fósforo

por colorimetria utilizando o método do vanado-molibdato de amônio; o potássio, cálcio, magnésio, cobre, ferro, manganês e zinco, por espectrofotometria de absorção atômica. O enxofre por espectrofotometria de absorção atômica, método indireto, via bário. O boro foi determinado pelo método da azometina H. O cloro foi analisado pelo Centro de Pesquisa Agroflorestal da Amazônia Oriental, através da titulação com nitrato de prata, segundo método indicado pelo I.R.H.O. (1980).

3.5. Delineamento experimental e variáveis estudadas

O delineamento experimental foi considerado como inteiramente casualizado com 4 repetições. Obtida significância na análise de variância, usou-se o teste de Tukey ao nível de 5% para comparação entre as médias (GOMES, 1970).

As variáveis utilizadas para avaliar os tratamentos foram: altura das plantas, circunferência do coleto, producão de matéria seca, concentração, acúmulo exportação de macronutrientes e micronutrientes. As quantidades acumuladas de nutrientes nos componentes do dendezeiro, para cada idade, foram estimados, multiplicando-se as concentrações dos elementos pelos valores de matéria seca de As quantidades cada componente.

imobilizadas dos nutrientes foram obtidas somando-se os acumulados do estipe, "cabbage" e flechas, enquanto as recicladas dos folíolos, ráquis, pecíolos e inflorescências masculinas.

Revelada a significância do teste F, realizouse o desdobramento para as equações até o sexto grau,
referente às variáveis do crescimento, acúmulo e exportação
de nutrientes. Para selecionar as equações que melhor
explicavam os resultados, utilizou-se além do teste F, o
coeficiente de determinação das regressões.

4. RESULTADOS E DISCUSSÃO

4.1. Crescimento

4.1.1. Altura das plantas e circunferência do coleto

Os resultados referentes à altura média das plantas desde a axila da folha 33 e da circunferência do coleto do dendezeiro em função da idade, encontram-se na Tabela 6. Verifica-se pela comparação entre as médias pelo teste de Tukey a 5%, que estas variáveis apresentaram comportamento diferenciado com o decorrer dos anos, atingindo no oitavo ano, 226,50 cm de altura e 323,50 cm de circunferência. Em termos percentuais percebe-se com mais clareza, uma redução mais acentuada do crescimento do dendezeiro a partir do quinto ano, possivelmente devido a diminuição da precipitação pluviométrica.

A equação de regressão que melhor se ajustou para as duas variáveis foi a quadrática, apresentando alto coeficiente de determinação e mostrando portanto um erro muito baixo (Figura 3).

Tabela 6. Altura das plantas, circunferência do coleto do dendezeiro e seus respectivos incrementos em função da idade.

Idade (anos)	Altura (cm)	Incremen anual d altura (cm)	3	Circunfe- rência do coleto (cm)	Incremer anual c circun rência coleto(c	da fe- do
2	8,50e		%	125,87f		%
3	30,00de	21,50	253	171,75e	45,88	36,5
4	62,00cd	32,∞	107	226,00d	54,25	31,6
5	73,75c	11,75	19	225,10c	29,10	12,9
6	135,75b	62,00	84	283,50b	28,40	12,6
7	196,50a	60,75	45	302,60ab	19,10	6,7
8	226,50a	30,00	15	323,50a	20,90	6,9

Médias seguidas de letras iguais na mesma coluna, não diferem entre si ao nível de 5% de probabilidade, pelo teste de Tukey.

O crescimento em altura do dendezeiro tem sido objeto de estudo de vários pesquisadores, sendo um dos principais caracteres considerados no melhoramento genético. Esta importância se deve à sua influência na altura dos cachos, na dificuldade e demora na colheita dos mesmos e, consequentemente, no custo de produção e na duração da exploração. Portanto, é desejável, sob o ponto de vista econômico, o crescimento vertical lento do dendezeiro para que haja maior longevidade na sua exploração.

Comparando os resultados obtidos de altura, com os alcançados por JACQUEMARD (1979), nas condições da

Costa do Marfim - África, constata-se que são bastante semelhantes, sendo cerca de 20 cm maiores na ecorregião da Amazônia. O referido pesquisador concluiu que até o terceiro ano, a palmeira cresce mais em diâmetro e muito pouco no sentido longitudinal, porém a partir do terceiro até o sexto ano, a velocidade de crescimento longitudinal aumenta, estabili-zando-se entre o sexto e o vigésimo anos, em função das condições climáticas. Os resultados contidos na Tabela 6, são coerentes com os obtidos por JACQUEMARD (1979), pois os maiores incrementos radiais ocorreram até o quarto ano, enquanto que o incremento longitudinal foi maior à partir do sexto ano.

Pesquisas mais recentes desenvolvidas por JACQUEMARD & BAUDQUIN (1987), mostraram aumento progressivo da velocidade de crescimento que atingem nível máximo ao redor dos dez anos, para posteriormente, apresentar uma gradual redução. Pelos resultados de altura da planta do presente trabalho, percebe-se uma tendência de redução do crescimento no oitavo ano, cujo incremento, em relação ao sétimo, foi de apenas 30 cm. Entretanto, há necessidade de maior tempo de estudo para que seja melhor esclarecido esse crescimento.

NG et al. (1968a), na Malásia, verificaram que o crescimento do estipe foi elevado nos primeiros anos reduzindo gradualmente até o oitavo e ficando praticamente constante, do nono ao décimo quinto ano.

Vários fatores são apontados como responsáveis pelo comportamento do crescimento do dendezeiro, entre os

鹽

匾

quais os genéticos e climáticos. NOIRET & GASCON (1967), encontraram diferenças no crescimento entre as variedades Dura e Tenera. Já Beirnarert & Vanderweyen (1941), citados por JACQUEMARD & BAUDOUIN (1987), concluíram que o crescimento do estipe não diferiu entre as variedades. Fatores climáticos como temperatura, luminosidade e umidade, que através da fotossintese, exercem efeito indireto sobre o crescimento, também têm sido investigados, merecendo destaque o trabalho de JACQUEMARD (1979), que observou diferenças no crescimento num mesmo material vegetal, apontando como causa principal a precipitação pluviométrica.

4.1.2. Produção de matéria seca

Os resultados referentes à produção de matéria seca nos diferentes componentes da planta, em função da idade, encontram-se na Tabela 7. A comparação entre as médias através do teste de Tukey, mostrou um comportamento variável com a idade. Nota-se que a produção de matéria seca em todos os componentes do dendezeiro aumentou com o decorrer dos anos, atingindo valores mais elevados no oitavo ano. Dentre todos os órgãos, o estipe exibiu maior produção de matéria seca, com 161,55 g/planta, correspondendo a 41% da matéria 8). Pelos resultados (Tabela seca total da planta apresentados observa-se que, à partir do quinto ano, a seca obedeceu 亩 seguinte ordem produção de matéria decrescente: estipe > pecíolos > foliolos > ráquis > frutos > espiguetas > inflorescências masculinas > pedúnculos > flechas > "cabbage".

Tabela 7 - Produção de matéria seca dos diferentes componentes do dendezeiro, em função da idade.

		PSH	2,3	5,3	12,7	19,9	32,1	3,6	2,9
	Tota1					56d 1	85c 3.	304,755 43,6	396,69a 56,7
	Ĥ	PS	16,62f	37,1 f	88,94e	139,66d	224,85c	304,	396,
	3.8	PSH	Ţ	0,05	1,2	1,5	2,2	3,2	0,4
	Frutos	PS	1	0,39f	8,32e	10,57d	15,55c	22,75b	28,11a
	etas	PSH	1	0,07	0,2	0,7	1,6	2,2	3,6
	Espiguetas	PS	.1	364°0	1,80e	5,25d	11,09c	15,45b	25,24a
	Pedúnculos	PSH	I .	0,02	0,10	6,0	0,3	9,0	6,0
	Pedún	PS		0,18f 0,02	0,75e	1,95d	2,42c 0,3	4,45b	6,27a 0,9
	lasc.	PSH	1,	0,07	0,2	0,3	0,5	7,0	6,0
Produção de matéria seca	Inf. Masc.	PS	ļ	0,55£ 0,07	1,63e	5,2 2,11d	12,6 3,78c	17,5 4,85b	6,46a
	· 0	PSH	9,0	1,3	2,2	5,2	12,6	17,5	23,0
	Estipe	PS	4,51e	9,16e	15,36e	36,76d	88,18c	122,17b	161,55a 23,0 6,46a 0,9
	has	PSH	0,02	0,03	0,1	0,2	0,2	7,0	0,5
	Flechas	PS	0,19e	0,27e	1,04e	1,23cd	1,64c	0,05 2,58b	3,60a
	n bage	PSH	0,01	0,02	0,03	0,04	50,00	90,0	90,0
	"Cabbage	PS	0,08f	0,126	0,25d	0,28c	0,35b	0,37b	0,42a
	, vi	PSH	9,0	8,0	2,0	2,7	3,8	8,4	6,5
	los Raquis	PS	0,6 3,97f 0,6 0,08f 0,01	5,87£	4,0 13,94e 2,0 0,25d	5,0 18,88d 2,7 0,28c	6,3 26,84c 3,8 0,35b	7,6 33,85b 4,8 0,37b	10,4 40,97a 5,9 0,42a 0,06 3,60a
		PSH	9,0	1,6	0,4	5,0	6,3	7,6	10,4
	Peciolos	PS	4,35e	11,27e	27,71d	34,80d	44,46c	53,61b	73,37a
	olos	PSH ²	0,5	1,3	2,6	0,4	4,4	4,9	7,2
	Foliolos	ps1	3,52f 0,5	8,80e	18,14d	27,83c	30,54c	44,67b	50,60a
	Idade	(ano)	2	3	7	2	9	7	œ

(1) Peso seco (kg/planta)

(2) Peso seco por hectare (t/ha)

Médias seguidas por letras iguais, na mesma coluna não diferem significativamente ao nível de 5% pelo teste de Tukey.

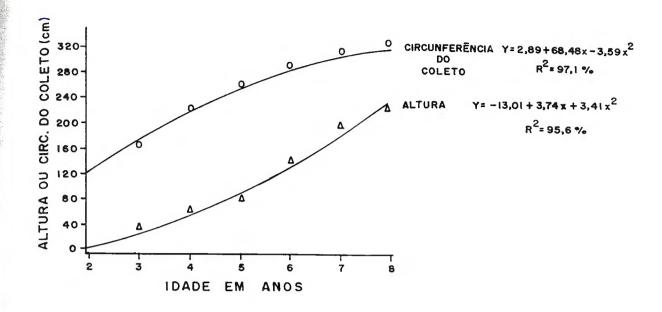


Figura 3. Altura das plantas e circunferência do coleto do dendezeiro, em função da idade.

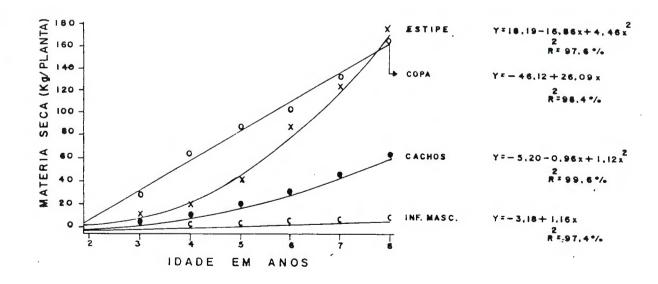


Figura 4. Produção total de matéria seca na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade.

inflorescências Tabela 8 - Produção e distribuição percentual de matéria seca na copa, estipe, cachos e masculinas no dendezeiro, em função da idade.

Idade		Copa		ES	Estipe		S	Cachos		Inf. masculinas	iascu]	inas	Total	11
(Anos)	kg/p ¹	%	t/ha ²	kg/p	%	t/ha	kg/p	%	t/ha	kg/p	%	t/ha	kg/p	t/ha
2	12,15g 73,0	73,0	1,7	4,51e	27,0	9,0							16,6f	2,3
3	26,35f	71,0	3,8	9,16e	25,0	1,3	1,06f	2,7	0,1	0,55f 1,3 0,08	1,3	0,08	37,1f	5,3
7	61,09e	0,69	8,7	15,36e	17,0	2,2	10,87e	12,2	1,6	1,63e	1,8	0,2	88,9e	12,7
5	83,03d	59,5	11,9	36,76d	26,0	5,2	17,77d	13,0	2,5	2,11d 1,5 0,3	1,5	0,3	139,6d	19,9
9	103,84c	46,2	14,9	88,18c	39,2	12,6	29,07c	13,0	4,2	3,78c	1,6 0,5	0,5	224,8c	32,1
7	135,09b	44,3	19,3	122,17b	40,1	17,5	42,65b 14,0	14,0	0,9	4,85b 1,6	1,6	0,7	304,7b	43,6
∞	, 168,98a	42,6	24,2	161,55a	40,7	23,0	59,73a	15,1	8,5	6,46 a	1,6	6,0	396,7a	56,7

1 - Quilogramas por planta.

^{2 -} Toneladas por hectare.

A comparação entre os resultados da produção de matéria seca com os obtidos por NG et al. (1968a), nas condições da Malásia, estão contidos na Tabela 9. Fica evidente a superioridade na produção de matéria seca dos folíolos até o quarto ano na Malásia sendo, no segundo ano, 4,8 vezes maior que no Brasil. No quinto e sexto anos os valores são bastante próximos, para então no sétimo e oitavo anos, serem cerca de 1,2 vezes menores que os obtidos no presente trabalho. Comportamento semelhante foi observado no ráquis, porém somente no oitavo ano, o peso da matéria seca na Amazônia, foi 1,3 vezes superior ao da Malásia.

Já nas flechas e principalmente no estipe, houve uma superioridade marcante do intenso crescimento na Malásia. No "cabbage", somente a partir do sétimo ano ocorreu uma tendência de equilíbrio da produção de matéria seca, entre as duas localidades. Na copa, os valores de peso seco observados na Malásia, foram superiores até o quinto ano, equilibraram-se no sexto e sétimo para no oitavo serem 27,9% mais elevados nas condições da Amazônia. A explicação mais provável para o crescimento mais intenso da copa sobre estipe, observado na Amazônia, em relação ao verificado na Malásia, pode ser devido principalmente às diferenças material genético. Enquanto na Malásia, no trabalho de NG et al. (1968a), foi utilizada a variedade Dura, no Brasil, utilizou-se Tenera, híbrido comercial melhorado, dotado de caracteres desejáveis, tais como possuir um crescimento vertical mais lento. A tendência de maior crescimento

estipe na Malásia, leva à uma dificuldade maior na colheita, com o decorrer da idade do dendezeiro. Portanto, crescimento mais ativo da copa em detrimento do estipe, é uma característica desejável e vantajosa, pois permitirá à planta consumir mais energia na formação dos seus componentes foliares, propiciando maior atividade fotossintética, em benefício de uma melhor produtividade. Além do fator genético, as condições climáticas podem ser consideradas como responsáveis pelo crescimento mais ativo observado na Malásia, principalmente a precipitação pluviométrica, que se benefíciou de totais anuais mais elevados do que na região onde se desenvolveu o presente trabalho.

A Tabela 8, também apresenta um paralelo entre os resultados de produção da matéria seca nos componentes da copa (pecíolos, foliolos, ráquis, cabbage" e flechas) estipe, cachos (pedúnculos, espiguetas e frutos) e inflorescências masculinas. A exemplo do observado individualmente para cada componente do dendezeiro, houve variação na produção de matéria seca com a idade, obtendo-se a seqüência: copa > estipe > cachos > inflorescências masculinas. Deve-se notar, que a copa apresentou maior produção de matéria seca, entretanto, a partir do sexto ano, essa supremacia sofreu sinais de redução para que, no oitavo ano, a diferença seja de apenas 1%.

A distribuição percentual de matéria seca na copa, contida na Tabela 8, mostra redução com a idade, atingindo valores mais elevados até o quarto ano e o mínimo

de 42,6% no oitavo ano. Por outro lado, essa redução no peso da matéria seca da copa refletiu-se em uma maior acumulação no estipe, a partir do quinto ano e nos cachos, no início do quarto ano. As inflorescências masculinas em termos percentuais apresentaram pouca variação no peso seco, permanecendo praticamente constante a partir do quinto ano.

A Figura 4, expõe o comportamento da produção total de matéria seca da copa, estipe, cachos e inflorescências masculinas, com as suas respectivas equações de regressão. Esta análise de regressão, mostrou que a produção total de biomassa na copa e inflorescências masculinas podem ser estimadas por equações do primeiro grau, enquanto que para o estipe e cachos por do segundo grau.

Dentre os constituintes dos cachos, a maior produção de matéria seca, com exceção do segundo ano, ficou por conta dos frutos, seguido das espiguetas e por último dos pedúnculos. Estes resultados concordam com os obtidos por NG & THAMBOO (1967), cuja a sequência decrescente foi: casca > amêndoa > polpa > espigueta > pedúnculo.

Na Malásia, a produção de matéria seca na copa encontrada por NG et al. (1968a), superou a do estipe até o quinto ano, quando estabilizou sendo que, a partir dessa idade o estipe passou a se apresentar com maior conteúdo.

Dentre os componentes da copa, os pecíolos dominaram a producão de matéria seca, seguidos de perto pelos folíolos e ráquis, ao passo que as flechas e "cabbage" tiveram a menor participação. Essa alta percentagem de

matéria seca na copa é de relevante significado, quando se pensa na ciclagem de nutrientes, pois as folhas do dendezeiro, constituídas pelos foliolos, ráquis e pecíolos são cortadas e depositadas nas entrelinhas dos dendezeiros, propiciando deste modo, retorno dos nutrientes ao solo. A distribuição percentual da copa, estipe, cachos e inflorescências masculinas é melhor visualizada através da Figura 5. Percebe-se um maior distanciamento entre os valores da copa e estipe até o quinto ano, reduzindo acentuadamente nos anos seguintes, chegando no oitavo a praticamente igualar-se. Cachos e inflorescências apresentaram comportamentos praticamente estáveis.

A curva de produção total de matéria seca do dendezeiro é apresentada na Figura 6, a qual está relacionada com a estipe, ráquis e espiguetas sendo que a equação que mais se ajustou foi a quadrática, ascendente com alto coeficiente de regressão.

Os resultados da produção total de matéria seca de 47,3 t/ha obtidos no oitavo ano, excluindo a produção dos cachos, foram semelhantes aos encontrados por REES & TINKER (1963), de 48 t/ha, porém com plantas de 14 anos na Nigéria. Também foram superiores aos encontrados por Jafre (1984), citado por DUFRENE et al. (1990), na Costa do Marfim, com 37,5 t/ha em palmeiras de nove anos. Por outro lado, DUFRENE (1990), em palmeiras com 13 anos, incluindo a matéria seca dos frutos, obteve 77,6 t/ha, sendo este bem superior ao valor de 56 t/ha obtido deste trabalho como era de se esperar.

Tabela 9. Produção de matéria seca (kg/planta) nos diferentes componentes do dendezeiro, em função da idade na Malásia (var. Dura) e Brasil (var. Tenera).

Idade (anos)	Local	Folio- los	Rá- quis	F16e- chas	Cabbage	Copa	Estipe
2,4	Malásia¹	16,8	44,1	2,58	0,39	63,9	29,9
2	Brasil ²	3,5	8,3	0,19	0,08	12,0	4,5
3,3	Malásia	22,8	52,2	2,30	0,39	77,7	57,3
3	Brasil	8,8	17,1	0,27	0,12	26,3	9,1
4,3	Malásia	33,3	65,1	3,25	0,57	102,3	92,3
4	Brasil	18,1	41,6	1,04	0,25	61,0	15,3
5,3	Malásia	29,2	57,9	5,13	0,82	93,2	120,9
5	Brasil	27,8	53,6	1,23	0,28	83,0	36,7
6, 3	Malásia	36,0	65,8	4,04	0,58	106,4	143,6
6	Brasil	30,5	71,3	1,64	0,35	103,8	88,1
7,5	Malásia	36,7	90,5	7,99	0,38	135,6	212,5
7	Brasil	44,6	87,5	2,58	0,37	135,0	122,1
8,5	Malásia	42,3	81,9	7,49	0,46	132,1	221,3
8	Brasil	50,6	114,3	3,60	0,42	168,9	161,5

¹ NG et al. (1968a)

² Presente trabalho.

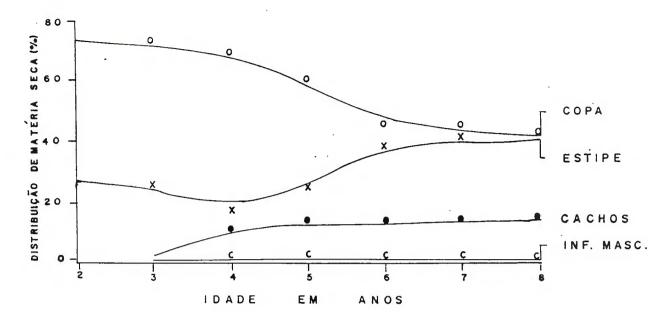


Figura 5. Distribuição percentual de matéria seca nos diferentes componentes do dendezeiro, em função da idade.

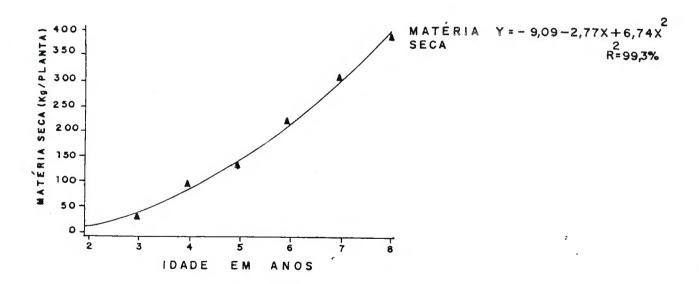


Figura 6. Produção total de matéria seca no dendezeiro, em função da idade.

Comparando-se a produção de matéria seca do dendezeiro com algumas espécies florestais da Amazônia, verifica-se que os resultados obtidos de 392 kg/planta, no oitavo ano, são cerca de 197% mais elevados do que os encontrados por FRAZÃO (1985), para plantas de freijó (Cordia goeldiana, Huber), com oito anos, e cerca de 7,3% para plantas de taxi (Sclerolobium paniculatum, Vogel) na idade de nove anos obtidos por MATOS (1993). Infere-se portanto, que o dendê (Elaeis guineensis Jacq.), pode produzir maior quantidade de biomassa do que certas espécies florestais.

A equação de regressão ajustada para a produção de matéria seca do estipe, pecíolos, ráquis, flechas, "cabbage", espiguetas e pedúnculos foi a quadrática ascendente e para os foliolos, frutos e inflorescências masculinas a linear ascendente (Figura 7), o que demonstra que não se atingiu o crescimento máximo aos 8 anos de idade.

4.2. Extração de macronutrientes

4.2.1. Nitrogênio

4.2.1.1. Concentração

Os resultados das concentrações de nitrogênio nos diferentes componentes do dendezeiro em percentagem da

matéria seca em função das idades e as respectivas indicações das diferenças significativas são apresentados na Tabela 10 e melhor visualizados na Figura 8. Com exceção dos pecíolos, todos os componentes da planta mostraram variação na concentração com a idade. De modo geral, ocorreu aumento do teor de nitrogênio nos folíolos, ráquis, "cabbage", estipe, inflorescências masculinas, pedúnculos, espiguetas e frutos, porém sem obedecer a uma sequência cronológica. As flechas mostraram tendência de diminuição da concentração com o tempo.

BACHY (1965), estudando a influência da idade do dendezeiro sobre os teores de nitrogênio na folha 17, observou que em La Me (Costa do Marfim) e La Dibamba (Cameron) não houve variação, enquanto em Pobé (Dahomey) ocorreu uma queda nos teores após o oitavo ano.

OLLAGNIER & OCHS (1981), também constataram redução nos teores de nitrogênio na folha 17, com a idade, mesmo em plantas que receberam adubação nitrogenada. Na idade de 5 a 9 anos encontraram 2,65%; com 10 a 15, 2,5%; com 16 a 20, 2,45% e com mais de 20 anos, 2,35% de nitrogênio.

Dentre os componentes da copa, o "cabbage", folíolos e flechas foram os que apresentaram concentrações mais elevadas de nitrogênio, superando inclusive, as do estipe, enquanto os pecíolos e ráquis apresentaram as concentrações mais baixas.

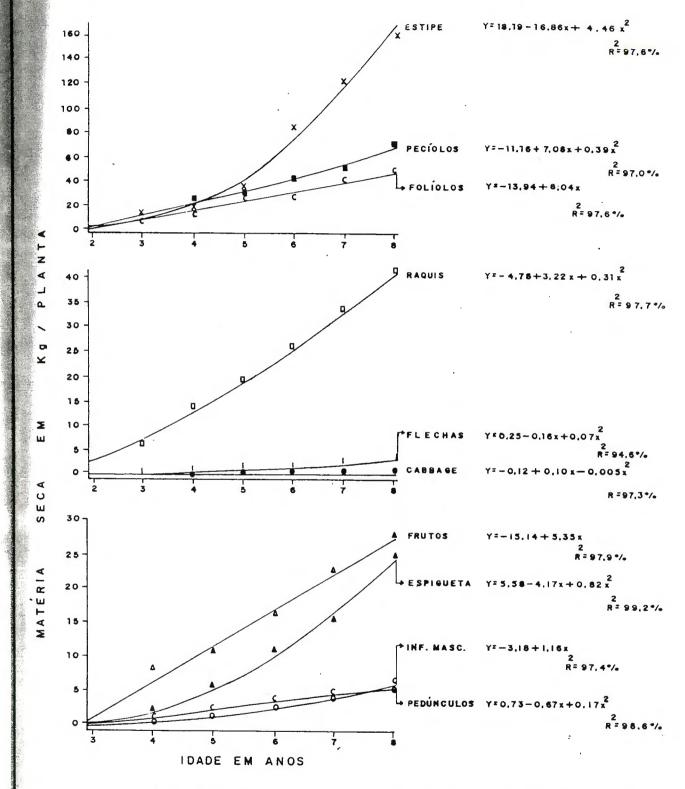


Figura 7. Equações de regressão do acúmulo de matéria seca nos diferentes componentes do dendezeiro, em função da idade.

A sequência decrescente dos teores de nitrogênio foi: "cabbage" > folíolos > inflorescências masculinas > flechas > estipe > frutos > pedúnculos > espiguetas > pecíolos > ráquis. A concentração de nitrogênio em todos os componentes do dendezeiro nos anos correspondentes, foi mais alta do que as obtidas por NG et al. (1968a), o que pode ser um indicativo de um melhor estado nutricional desse elemento, no Brasil.

O trabalho mais completo já publicado sobre a extração de nutrientes nos componentes responsáveis pela reprodução do dendezeiro, foi realizado por NG & THAMBOO (1967), na Malásia. Nessa pesquisa a concentração de nutrientes nos constituintes do cacho (polpa, casca, amêndoa, pedúnculo e espigueta) e inflorescência masculina foi determinada em dendezeiros de 10 a 15 anos em três localidades, com diferentes tipos de solos.

Como não se estudou separadamente os constituintes dos frutos (polpa, casca e amêndoa) conforme foi feito na Malásia, as comparações, entre os resultados obtidos nos componentes dos cachos, serão mais especificamente para pedúnculos e espiguetas. Com referência à concentração média de nitrogênio no pedúnculo os valores encontrados neste trabalho no oitavo ano, foram praticamente iguais aos da localidade de D.Durian, na Malásia, ou seja, 0,62% contra 0,66%. Já para as espiguetas, a concentração média de nitrogênio ficou abaixo das encontradas nas três localidades da Malásia.

Tabela 10 - Concentração (%) de macronutrientes nos diferentes componentes do dendezeiro, em função da idade.

Idade					Component	tes da pi	lanta			
(Anos)	Foliolos	Peciolos	Raquis	Cabbage	Flechas	Estipe	Inf. Mas.	Pedúnculos	Espiguetas	Frutos
					NITROG	ĒNIO				
2 3 4 5 6 7 8	1,48b 2,23a 2,38a 2,25a 2,26a 2,30a 2,26a	0,46a 0,46a 0,45a 0,45a 0,48a 0,44a 0,51a	0,39c 0,35 d 0,45a 0,44ab 0,40bc 0,44ab 0,45a	2,93bc 3,16bc 3,16bc 3,59a 2,88c 3,31ab 3,69a	1,67ab 1,80a 1,44bcd 1,27cd 1,20d 1,54abc 1,48bcd	0,78c 1,45ab 1,71a 1,34ab 1,18b 1,16bc 1,07bc	1,70b 1,90a 1,70b 1,68bc 1,55c 1,82ab	0,60b 0,58b 0,64ab 0,68a 0,64ab 0,62ab	- 0,52d 0,65ab 0,61bc 0,68a 0,59c 0,53d	1,06bc 1,31a 0,96c 1,04bc 1,04bc
					FÓSFO					
·2 3 4 5 6 7 8	0,11b 0,13 ab 0,12ab 0,12ab 0,13a 0,14a 0,13a	0,02b 0,02b 0,02b 0,02b 0,02b 0,03b 0,06a	0,02c 0,02c 0,02c 0,03c 0,06a 0,04b 0,05b	0,55cd 0,57cd 0,70c 0,51d 0,69c 0,88b 1,09a	0,21a 0,20a 0,15b 0,13b 0,14b 0,21a 0,19a	0,06c 0,09bc 0,24a 0,10b 0,07bc 0,10b 0,10b	0,28b 0,30b 0,35a 0,38a 0,38a 0,37a	0,07c 0,05d 0,05d 0,10a 0,08bc 0,09ab	0,05bc 0,04c 0,05bc 0,05bc 0,05bc 0,08a 0,06b	0,13d 0,17b 0,14cc 0,20a 0,15c 0,20a
					POTÁS	SIO				
2 3 4 5 6 7 8	1,23a 1,06b 1,06b 1,03b 1,01b 0,86c 0,80c	1,09b 1,38a 1,07b 1,18b 1,08b 0,83c 0,77c	0,99a 1,04a 0,73c 0,71c 0,85b 0,63d 0,52e	5,03ab 5,43a 4,49b 4,97ab 4,84ab 4,62b 4,40b	2,80a 2,94a 2,16b 2,29b 1,99b 2,14b 2,13b	1,17c 3,27ab 3,71a 2,83b 1,82c 2,63b 1,27c	- 1,87ab 1,64ab 2,16a 2,01ab 1,88ab 1,53b	2,10b 2,63a 2,62a 1,92bc 1,29d 1,76c	1,01c 1,03c 1,43ab 1,32b 1,01c 1,65a	2,53a 2,04b 0,95d 1,78bc 1,56c 1,08d
	,		,	,	CALC	•	,			
2 3 4 5 6 7 8	0,78a 0,85a 0,83a 0,83a 0,77a 0,73a	0,23f 0,33e 0,36d 0,41c 0,39c 0,54a 0,45b	0,31cd 0,30d 0,34cd 0,35c 0,35c 0,41b 0,49a	1,27a 1,34a 1,02bc 0,99bc 0,88c 0,99bc 1,13ab	0,58b 0,57b 0,44c 0,38cd 0,36d 0,41cd 0,67a	0,26d 0,51c 1,16a 0,77b 0,59bc 0,52c 0,40cd	- 0,62c 0,54c 1,05b 0,96b 1,44a 1,36a	0,16d 0,20d 0,38ab 0,42a 0,25c 0,36b	- 0,16c 0,25b 0,14c 0,40a 0,13c 0,27b	0,41c 0,66a 0,55b 0,43c 0,37c 0,71a
					MAGNÉ	SIO				
2 3 4 5 6 7 8	0,22b 0,25ab 0,25ab 0,27a 0,22ab 0,23ab 0,24ab	0,13b 0,16b 0,15b 0,14b 0,15b 0,20a 0,15b	0,07b 0,10b 0,15a 0,09b 0,08b 0,11b 0,10b	0,66c 0,82ab 0,73bc 0,85ab 0,78abc 0,88a 0,75abc	0,18bc 0,24ab 0,14c 0,18bc 0,18bc 0,30a 0,30a	0,18c 0,24c 0,85a 0,39b 0,16c 0,22c 0,16c	- 0,34c 0,30c 0,55b 0,56b 0,65a 0,55b	0,07c 0,10bc 0,14a 0,11b 0,08c 0,08c	0,10cd 0,08d 0,13b 0,15a 0,12bc 0,16a	0,30c 0,42a 0,34bc 0,37ab 0,32bc 0,28c
					ENXOF	RE				
2 3 4 5 6 7 8	0,06c 0,09ab 0,08ab 0,08ab 0,07b 0,09a 0,08ab	0,01d 0,04c 0,07a 0,07a 0,05bc 0,06ab 0,04c	0,01a 0,01a 0,01a 0,01a 0,01a 0,01a 0,01a	0,24d 0,39bc 0,36bc 0,27d 0,35c 0,42b 0,56a	0,06a 0,07a 0,03b 0,03b 0,03b 0,05a 0,06a	0,05c 0,18a 0,16ab 0,15ab 0,18a 0,14b 0,13b	- 0,11c 0,15c 0,29ab 0,29ab 0,31a 0,25b	0,02d 0,02d 0,02d 0,02d 0,06b 0,08a 0,04c	0,01e 0,02d 0,03c 0,05b 0,05b 0,06a	0,12b 0,15a 0,14at 0,16a 0,13b 0,13b

Valores com letras iguais na mesma coluna, não diferem entre si ao nível de 5% de $\,$ probabilidade pe $\,$ lo Teste de Tukey.

Nas inflorescências masculinas, os teores médios de nitrogênio, no oitavo ano, foram semelhantes ao da localidade Jerangau e superior aos das demais.

NG & THAMBOO (1967), encontraram maior concentração de nitrogênio na amêndoa, concordando com os resultados obtidos neste trabalho, cuja sequência decrescente foi: frutos > pedúnculos > espiguetas. A faixa de concentração de nitrogênio nos constituintes dos cachos variou de 0,52% (espiguetas) a 1,31% (frutos), enquanto nos resultados médios das três localidades obtidos pelos referidos pesquisadores variou, de 0,03% (casca) a 1,30% (amêndoa).

A concentração ótima do nitrogênio na folha 17, de acordo com UEXKULL & FAIRHURST (1991), é de 2,4% a 3% da matéria seca. Nas palmeiras jovens, teores inferiores à 2,5% e, nas mais velhas, menores de 2,3%, indicam deficiência de nitrogênio, sugerindo necessidade de correção desse elemento. Por outro lado, segundo ROGNON (1984), o nível crítico dó nitrogênio não pode ser fixo, pois varia em função dos teores de fósforo. Um teor de 2,5% em nitrogênio pode conduzir à deficiência se a concentração de fósforo for de 0,170% ou a uma boa nutrição se esta for de 0,140%.

Com base nos valores obtidos por UEXKULL & FAIRHURST (1991), verifica-se que a concentração de nitrogênio nos folíolos de toda a planta, com exceção do segundo ano, estão ligeiramente abaixo, do limite inferior,

indicando uma possível carência desse nutriente. Entretanto, deve-se ressaltar que os teores do presente trabalho correspondem aos foliolos de toda a planta, enquanto o ótimo, recomendado pelo referido pesquisador, refere-se aos foliolos da folha 17.

A amplitude de variação nas concentrações de nitrogênio nos vários componentes do dendezeiro, em decorrência das idades, estão contidos na Tabela 11. As maiores amplitudes foram observadas no ráquis e as menores nos pecíolos. Essas variações nos teores de nitrogênio e nos demais nutrientes já era esperada, devido à influência de vários fatores, tais como: órgãos da planta constituídos por diferentes tecidos, idade, clima, interação entre os elementos, manejo cultural, etc.

4.2.1.2. Acúmulo

Os resultados do acúmulo médio de nitrogênio em percentagem da matéria seca dos diversos componentes do dendezeiro, em função dos anos, encontram-se na Tabela 12. Observa-se que a acumulação de nitrogênio em todos os componentes aumentou com o transcorrer da idade, destacandose, no oitavo ano, o estipe com 1723,47 g/planta e os folíolos com 1144,40 g/planta, correspondendo a 42% e 28%, respectivamente (Tabela 13). De modo geral a sequência do conteúdo de nitrogênio foi: folíolos > estipe > pecíolos > frutos > ráquis > espiguetas > inflorescências masculinas > flechas > pedúnculos > "cabbage".

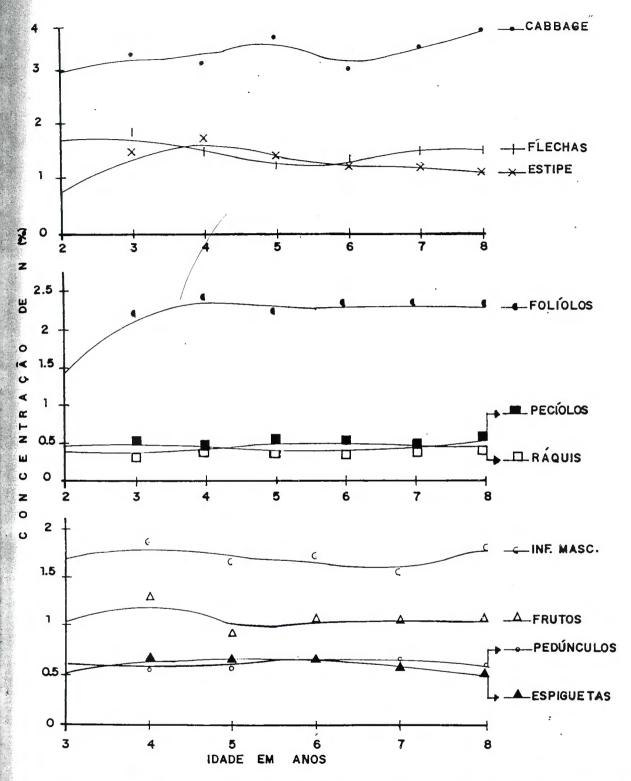


Figura 8. Concentração de nitrogênio nos diferentes componentes do dendezeiro, em função da idade.

Tabela 11 - Amplitude de variação das concentrações de macronutrientes nos diferentes componentes do dendezeiro.

Componentes da planta	N	Ъ	M	Ca	Mg	တ
				2		
Foliolos	1,48 - 2,38	0,11 - 0,14	0,80 - 1,23	0,73 - 0,85	0,22 - 0,27	0,06 - 0,09
Pecíolos	0,45 - 0,51	0,02 - 0,06	0,77 - 1,38	0,23 - 0,54	0,13 - 0,20	0,01 - 0,07
Ráquis	0,35 - 0,45	0,02 - 0,06	0,52 - 1,04	0,30 - 0,49	0,07 - 0,11	0,01 - 0,01
Cabbage	2,93 - 3,59	0,51 - 1,09	4,40 - 5,43	0,88 - 1,34	0,66 - 0,88	0,24 - 0,56
Flechas	1,20 - 1,80	0,13 - 0,21	1,99 - 2,94	0,41 - 0,67	0,18 - 0,30	0,03 - 0,07
Estipe	0,78 - 1,71	0,06 - 0,24	1,17 - 3,71	0,26 - 0,59	0,16 - 0,85	0,05 - 0,18
Inflorescênciæ masculinas	1,55 - 1,90	0,28 - 0,38	1,53 - 2,16	0,54 - 1,44	0,30 - 0,65	0,11 - 0,31
Pedúnculos	0,60 - 0,68	0,05 - 0,10	1,76 - 2,63	0,16 - 0,42	0,07 - 0,14	0,02 - 0,08
Espiguetas	0,52 - 0,68	0,04 - 0,08	1,01 - 1,43	0,13 - 0,40	0,08 - 0,16	0,01 - 0,06
Frutos	0,96 - 1,31	0,13 - 0,20	0,95 - 2,53	0,37 - 0,71	0,28 - 0,42	0,12 - 0,16

Tabela 12 - Acúmulo médio de macronutrientes (g/planta) nos diferentes componentes do dendezeiro, em função da idade.

Idade					Component	es da plant	:a			
Anos)	Foliolos	Peciolos	Ráquis	Cabbage	Flechas	Estipe	Inf. Mas.	Pedúnculos	Espiguetas	Frutos
					NITROGĒ	NIO				
2 3 4 5 6 7 8	53,38e 196,45d 432,88c ,625,86b 690,47b 1030,58a 1144,40a	20,10d 52,61d 124,60c 156,19c 217,18b 235,15b 379,86a	15,78e 20,69e 63,23d 83,47d 108,61c 150,67b 183,34a	2,41f 4,02e 7,91d 10,14c 10,29c 12,32b 15,77a	3,27d 4,86d 14,98c 15,72c 19,80c 39,88b 53,44a	35,28f 131,07ef 264,34e 494,82d 1046,87c 1420,23b 1723,47a	'9,46e '31,14d 36,08d 63,60c 75,30b 118,00a	1,08f 4,36e 12,62d 16,63c 28,46b 39,04a	2,61f 11,68e 32,44d 75,87c 92,29b 134,44a	4,14e 109,71d 101,76d 163,16d 237,30t 306,61a
					FÓSFO	RO				
2 3 4 5 6 7 8	3,97d 11,44d 22,11c 34,69b 40,47b 62,64a 67,08a	0,87d 2,50d 5,54cd 6,96cd 9,95bc 16,08b 47,43a	0,89d 1,61d 3,06cd 5,66c 16,68b 14,49b 20,48a	0,46e 0,71e 1,75cd 1,45d 2,48c 3,27b 4,67a	0,43d 0,54d 1,59cd 1,63cd 2,30c 5,60b 6,93a	2,68e 8,22e 37,60d 38,51d 66,12c 125,29b 159,05a	1,59f 4,95e 7,39d 14,45c 18,43b 24,32a	0,13e 0,43e 1,07d 2,35c 3,67b 5,63a	0,25d 0,76d 2,75d 6,05c 13,51b 16,37a	0,50d 14,76c 14,80c 31,10b 34,68b 58,56a
					POTÁS	SIO	,			
2 3 4 5 6 7 8	43,43e 94,09d 193,05c 287,06b 309,98b 386,48a 408,40a	47,83e 155,76d 294,76c 413,13b 480,77b 446,11b 568,52a	39,40d 61,46d 101,86c 135,59b 229,53a 214,35a 212,84a	4,14f 6,91e 11,23d 14,01c 17,30ab 17,21b 18,82a	5,49e 7,91e 22,47d 28,37cd 32,54c 55,41b 75,89a	53,01f 300,75ef 566,60e 1029,74d 1605,49c 3196,11a 2026,36b	- 10,37c 26,86bc 45,60b 76,01a 91,55a 98,90a	3,78e 19,78d 51,13bc 46,50@2 59,75b 110,56a	5,00d 18,70d 75,13c 146,62b 156,11b 418,24a	9,88e 169,98c 100,68d 276,73b 355,00a 305,91b
					CĂLC	10				
2 3 4 5 6 7 8	27,74f 74,72e 150,40d 230,97c 237,47c 325,97b 406,10a	10,28f 38,0 f 101,10e 144,45d 174,45c 290,47b 330,05a	12,40e 17,62e 48,03d 66,11d 94,22c 141,84b 203,90a	1,04f 1,68e 2,55d 2,81cd 3,14c 3,71b 4,84a	1,15e 1,56de 4,63cde 4,69cd 5,89c 10,69b 24,28a	12,04d 46,46d 177,54c 286,85c 526,68b 638,87ab 654,07a	3,48e 8,84e 22,23d 36,37c 69,85b 88,05a	0,28d 1,50d 7,50c 10,24b 11,48b 22,55a	0,78e 4,48de 7,35d 44,34b 20,09c 68,17a	1,60e 54,91d 58,9 8cd 67,26c 85,81b 201,64a
					MAGNÉ	SIO				
2 3 4 5 6 7 8	7,91d 22,32d 46,47c 75,81b 69,48b 106,33a 122,73a		2,87d 5,87d 20,97c 17,47c 22,07c 37,23b 43,01a	0,54d 1,05d 1,82c 2,39b 2,80ab 3,30a 3,21a	0,36d 0,65d 1,52cd 2,26cd 3,05c 7,88b 11,01a	8,33c 21,95c 130,50b 144,02b 141,08b 278,10a 265,34a	1,89f 4,99e 11,63d 21,16c 31,88b 35,67a	0,13e 0,80d 2,82c 2,66c 3,67b 5,48a	0,51d 1,57d 6,83c 17,48b 18,95b 40,40a	1,17d 34,93c 36,25c 58,65b 72,78a 80,30a
					ENXO	FRE				
2 3 4 5 6 7 8	2,10e 7,92d 14,46c 22,26b 23,67b 41,25a 43,02a	4,58d 18,59c 23,39bc 22,29bc 32,04a	2,68bc 3,38b		0,36c	2,47d 16,74d 25,68cd 56,02c 158,78b 170,73b 213,76a	0,61d 2,45d 6,12c 10,96b 15,27a 16,14a	0,03d 0,16d 0,39d 1,50c 3,67a 2,50b	- 0,05e 0,36e 1,84d 5,80c 7,72b 17,03a	0,49d 13,10c 15,60c 25,24b 29,52b 36,68a

Valores com letras iguais na mesma coluna, não diferem entre si ao nivel de 5% de probabilidade pelo Teste de Tukey.

Tabela 13 - Distribuição percentual do acúmulo de matéria seca e macronutrientes nos diferentes componentes do dendezeiro, em função da idade.

Idade					Compone	ntes da p	lanta			
(Anos)	Foliolos	Pecíolo	Raquis	Cabbage	Flechas	Estipe	Inf. Mas.	Pedúnculos	Espiguetas	Frutos
					MA	TÉRIA SEC	A			
2 3 4 5 6 7 8	21,0 24,0 21,0 20,0 14,0 13,0	26,0 30,0 31,0 24,0 19,0 18,0	24,0 16,0 16,0 14,0 12,0 11,0	0,5 0,3 0,3 0,2 0,2 0,2	1,5 0,7 1,1 0,8 0,7 0,9 0,9	27,0 25,0 17,0 26,0 39,0 40,0 41,0 ITROGÊNIO	1,5 1,8 1,5 1,7 1,6 1,6	0,5 0,8 1,4 1,0 1,5	1,0 2,0 4,0 5,0 5,0	1,0 9,0 7,5 7,0 7,5 7,0
2 3 4 5 6 7 8	41,0 46,0 41,0 40,0 29,0 31,0 28,0	16,0 12,0 12,0 10,0 9,0 7,0 9,0	12,0 5,0 6,0 5,0 5,0 4,0 5,0	1,9 0,9 0,7 0,6 0,4 0,4	2,5 1,0 1,4 1,0 0,8 1,2 1,3	27,0 31,0 24,0 32,0 43,0 43,0 42,0 FÓSFORO	2,2 2,9 2,3 2,6 2,3 2,9	- 0,3 0,4 0,8 0,6 0,9 1,0	0,6 1,0 2,0 3,0 2,8 3,3	1,0 10,0 6,5 6,7 7,0 7,5
2	43,0	9,0	9,0	5,0	4,6	29,0	-	-	-	- 7 0
3 4 5 6 7 8	42,0 24,0 30,0 21,0 21,0 16,0	9,0 6,0 6,0 5,0 5,0 12,0	6,0 3,0 5,0 9,0 5,0 5,0	3,0 1,9 1,3 1,3 1,0	2,0 1,7 1,4 1,2 1,9	29,0 41,0 34,0 34,0 42,0 39,0 POTÁSSIO	5,8 5,4 6,4 7,5 6,2 6,0	0,5 0,5 0,9 1,3 1,2	0,9 0,8 2,4 3,2 4,5 4,0	1,8 16,0 13,0 16,0 12,0 14,0
2 3 4 5 6 7 8	23,0 14,0 14,0 13,0 10,0 8,0 10,0	25,0 24,0 21,0 19,0 15,0 9,0	20,0 9,0 7,0 6,0 7,0 4,0 5,0	2,1 1,0 0,8 0,7 0,5 0,4 0,4	2,9 1,2 1,6 1,3 1,0 1,2 1,8	2,7 46,0 40,0 47,0 50,0 64,0 48,0	1,6 1,9 2,0 2,4 1,8 2,2	0,6 1,4 2,4 1,4 1,3 2,6	7,6 1,3 3,4 5,0 3,2 10,0	26,0 11,0 5,0 8,0 7,0
2 3 4 5 6 7 8	43,0 40,0 27,0 28,0 20,0 20,0	16,0 20,0 18,0 17,0 15,0 18,0 16,0	19,0 10,0 9,0 8,0 8,0 9,0	1,6 0,9 0,5 0,3 0,3 0,2	1,8 0,9 0,8 0,6 0,5 0,7	CÁLCIO 19,0 25,0 32,0 35,0 43,0 40,0 33,0 MAGNÉSIO	1,9 1,6 2,7 3,0 4,4 4,5	0,2 0,3 0,9 0,9 0,7	0,4 0,8 0,8 3,7 1,3 3,4	0,9 10,0 7,0 5,6 5,4 10,0
2 3 4 5 6 7 8	31,0 30,0 16,0 22,0 17,0 16,0	23,0 25,0 15,0 14,0 16,0 16,0	5,0 6,0 6,0	2,0 1,4 0,6 0,7 0,7 0,5 0,4	1,3 0,9 0,5 0,6 0,8 1,2	32,0 30,0 46,0 41,0 35,0 41,0 37,0	2,6 1,8 3,3 5,3 4,8 5,0	0,2 0,5 0,8 0,7 0,5	0,7 0,6 2,0 4,3 2,9 5,5	1,6 12,3 10,0 14,5 10,9
2 3 4 5 6 7 8	37,0 25,0 19,0 17,0 9,0 13,0 12,0	8,0 14,0 24,0 18,0 9,0 10,0 8,0	3,0 2,0 1,5 1,0 1,1	1,6 1,1 0,6 0,5 0,5	2,0 0,6 0,4 0,3 0,2 0,5	43,0 52,0 33,0 44,0 63,0 56,0 58,0	1,9 3,1 5,0 4,3 5,0	0,09 0,2 0,3 0,6 1,2 0,6	0,2 0,5 1,4 2,3 2,5 4,6	1,6 17,0 12,0 10,0 9,7 9,9

A maior quantidade de nitrogênio acumulada nos foliolos ocorreu até o quinto ano, porém, à partir do sexto ano, essa dominância passou a ser exercida pelo estipe. Fica demonstrada, a importância dos foliolos como portanto armazenador de nitrogênio, até o quinto ano. A época na qual o estipe passou a predominar no estoque de nitrogênio, ou seja, no sexto ano, foi o mais tardio dentre todos os nutrientes. Essa maior quantidade acumulada de nitrogênio proporcionada \pela copa, armazenamento tardio deste elemento no estipe e definhamento da leguminosa Pueraria phaseoloides, L. com o decorrer dos ancs, vem ratificar e valorizar a prática já utilizada nos dendezais, de se depositar nas entrelinhas as folhas cortadas, propiciando desta forma, uma ajuda no fornecimento desse nutriente.

Confrontando-se os acúmulos de nitrogênio obtidos na Nigéria por TINKER & SMILDE (1963), mesmo para plantas de vinte e dois anos, constata-se que a acumulação do nutriente no presente trabalho foi até 1,4 vezes maior nos folíolos e estipe e 2,5 no ráquis. Apenas a do "cabbage" foi 2,5 vezes relevante Essa da Nigéria. superior à das condições supremacia dos resultados obtidos na Amazônia, pode ser explicada pelo baixo rendimento e grande heterogeneidade das Nigéria, inclusive com algumas palmeiras amostradas na palmeiras deficientes em potássio. Desse modo, os resultados obtidos na Nigéria, sobre produção de matéria seca e acúmulo de nutrientes devem ter sido influenciados, principalmente pelos fortes déficits hídricos, comuns naquele país, e que, como já é sabido, condiciona o crescimento e a produção do dendezeiro.

O trabalho mais completo sobre concentração e conteúdo de nutrientes, em vários órgãos do dendezeiro, em função das idades, foi realizado na Malásia por NG et al. (1968a), apesar de ter sido utilizada uma planta para cada idade. Os resultados comparativos entre os conteúdos de nitrogênio determinados no Brasil e na Malásia, mostram que, somente a partir do quinto ano, o conteúdo de nitrogênio, nos folíolos e ráquis, foram respectivamente até 1,4 e 1,9 vezes, mais elevados no Brasil, enquanto no estipe essa superioridade só foi observada a partir do sexto ano. Na Malásia, as quantidades acumuladas de nitrogênio nas flechas, em todos os anos, foi superior, enquanto no "cabbage" isto ocorreu até o quinto ano para posteriormente se equivalerem.

A comparação entre a quantidade acumulada de nitrogênio na copa, estipe, cachos e inflorescências masculinas, partes que encerram todos os componentes estudados, é mostrada na Tabela 14 e melhor visualizada através da Figura 9a com as suas respectivas equações de regressão. Constata-se que a copa foi a porção dominante até o quinto ano, atingindo 57%, porém a partir do sexto ano, essa diferença diminuiu, chegando praticamente a se igualar com o estipe. Na Malásia, NG et al. (1968a), constataram dominio da copa sobre o estipe até o quinto ano. A partir do

sexto ano, passou a haver predominância do estipe que foi aumentando com a idade. A máxima acumulação de nitrogênio nos frutos sobre o total da planta foi de 11,8%, enquanto nas inflorescências masculinas foi de 2,9%. A distribuição percentual nesses componentes pode ser melhor visualizada na Figura 10a.

A análise de regressão mostrou que a quantidade acumulada de nitrogênio em função da idade para estipe, pecíolos, espiguetas, pedúnculos, ráquis, flechas e "cabbage" podem ser calculadas por equações do segundo grau, ascendente, enquanto para os folíolos, frutos e inflorescências masculinas, pela linear ascendente (Figura 11).

4.2.2. Fósforo

4.2.2.1. Concentração

resultados analíticos da concentração de 05 fósforo encontram-se na Tabela 10, com as respectivas indicações de diferenças significativas, e na Figura 12, o com a idade do comportamento dos diferentes componentes dendezeiro. Observou-se variação na concentração de fósforo pois, com exceção das flechas, o teor de fósforo nos demais componentes, aumentou com o transcorrer da idade da planta. demanda de fósforo pelo Isso demonstra a crescente dendezeiro.

Na pesquisa realizada por NG et al. (1968a), os teores de fósforo no estipe decresceram com a idade.

Tabela 14 - Acúmulo médio e distribuição percentual de macronutrientes na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade.

Idade .					Compo	nentes	da Planta					
	Co	pa		Est	ipe	•	(Cachos		Inf. M	ascul	inas
(Anos)	g/p 1	%	kg/ha	g/p	%	kg/ha	g/p	%	kg/ha	g/p	%	kg/ha
		<u></u>			NII	ROGĒNIC)					
2 3 4 5 6	94,97f 278,65e 643,62d 891,40c 1046,37c	72,9 65,0 60,5 57,0 43,4	13,6 39,8 92,0 120,3 149,6	35,28f 131,07ef 264,34e 494,82d 1046,87c	27,1 31,0 24,8 31,5 43,4	5,0 18,7 37,8 70,7 149,7	7,84e 125,77d 146,84d 255,67c	1,8 11,8 9,3 10,6	1,1 17,9 20,9 36,6	9,46e 31,14d 36,08d 63,60c	2,2 2,9 2,2 2,6	1,3 4,4 5,1 9,1
7 8	1468,61b 1776,82a	44,2 43,3	210,0 254,1	1420,23b 1723,47a	42,7 42,0	203,1 246,4	358,05b 480,10a	10,8 11,7	51,2 68,6	75,30b 118,10a	2,3 2,9	10,8 16,9
_	,	, ,	,			ÓSFORO						
2	6,28f	70,0	0,9	2,68e	30,0	0,4						
3 4 5 6 7 8	16,83f 34,06e 50,40d 71,89c 102,10b 146,61a	61,0 37,0 44,0 37,4 34,2 35,7	2,4 4,9 7,2 10,3 14,6 20,9	8,22e 37,60d 38,51d 66,12c 125,29b 159,05a	30,0 40,6 33,5 34,4 42,2 38,7	1,2 5,4 5,5 9,4 17,9 22,7	0,89e 15,96d 18,63d 39,51c 51,86b 80,58a	3,2 17,2 16,2 20,5 17,4 19,7	0,1 2,3 2,6 5,6 7,4 11,5	1,59f 4,95e 7,39d 14,45c 18,43b 24,32a	5,7 5,3 6,4 7,5 6,2 5,9	0,2 0,7 1,1 2,1 2,6 3,5
					P	OIZSĀTC						
2 3 4 5 6 7 8	140,30f 326,16e 623,38d 878,19c 1070,14b 1119,58b 1284,40a	72,6 49,7 43,7 40,2 33,2 22.5 30,3	20,1 46,6 89,1 125,6 153,0 160,1 183,7	53,01f 300,75ef 566,60e 1029,74d 1605,49c 3196,11a 2026,36b	27,4 45,8 39,7 47,2 49,8 64,3 47,7	7,6 43,0 81,0 147,2 229,6 457,0 289,8	18,67e 208,47d 226,95d 469,86c 568,86b 834,72a	2,85 14,6 10,4 14,6 11,4 19,7	2,7 29,8 32,4 67,2 81,3	10,37c 26,86bc 45,60b 76,01a 91,55a 98,90a	1,6 1,9 2,0 2,4 1,8 2,3	1,5 3,8 6,5 10,9 13,1 14,1
						CÁLCIO						
2 3 4 5 6 7 8	52,63g 133,60f 306,74e 449,05d 615,19c 772,69b 969,18a		7,5 19,1 43,9 64,2 73,7 110,5 138,6	12,04d 46,46d 177,54c 286,85c 526,68b 638,87ab 654,07a	18,6 25,0 32,0 34,5 44,0 39,8 32,6	1,7 6,6 25,4 41,0 75,3 91,3 93,5	2,68e 60,89d 73,84c 117,38b 121,84b 292,36a	7,6	0,4 8,7 10,5 16,8 17,4 41,8	3,48e 8,84e 22,23d 36,37c 69,85b 88,05a	1,9 1,6 2,7 3,0 4,4 4,4	0,5 1,3 3,2 5,2 9,9 12,6
	,				M	AGNÉSIC)					
2 3 4 5 6 7 8	17,61e 48,21d 112,37c 146,67b 164,04b 264,81a 293,49a	39,4 42,1 40,5 39,5	16,1 20,9 23,4 37,8	21,95c 130,50b 144,02b 141,08b	32,2 29,7 45,8 41,3 34,8 41,5 36,8	3,1 18,6 20,6 20,2 39,8	37,31d 45,91d 78,80c 95,38b	13,0 13,2 19,5 14,2	0,3 5,3 6,6 11,2 13,6 18,0	1,89f 4,99e 11,63d 21,16c 31,88b 35,67a	1,8 3,4 5,2 4,8	0,3 0,7 1,7 3,0 4,5 5,1
						ENXOFRE						
2 3 4 5 6 7 8	3,27e 14,09d 35,72c 48,72b 50,46b 79,75a 83,09a	44,0 46,1 37,9 20,0 26,0	2,0 5,1 6,9 7,2	16,74d 25,68cd 56,02c 158,78b 170,73b	43,0 52,3 33,1 43,5 62,8 55,7	2,4 3,7 8,0 22,7 24,3	0,58e 13,63d 17,83d 32,55d 40,91t	17,6 13,8 12,9 13,3	5,7	2,45d 6,12c 10,96b 15,27a	3,2 4,8 4,3 5,0	0,35 0,9 1,6 2,9

¹ gramas por planta.

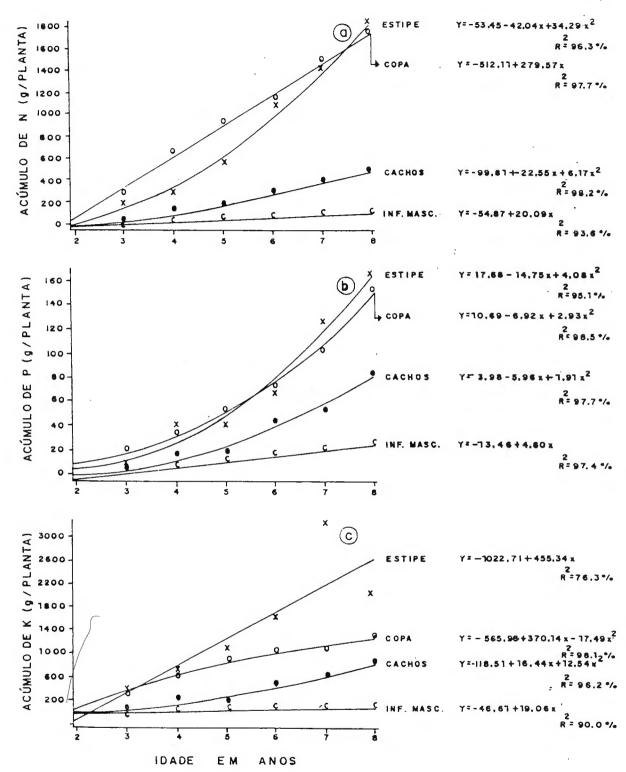
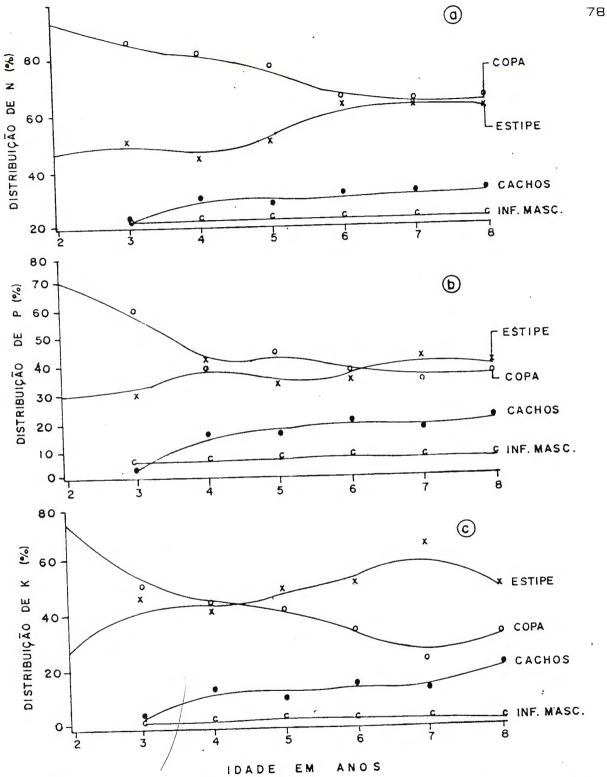



Figura 9. Acúmulo de nitrogênio (a), fósforo (b) e potássio (c) na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade.

Distribuição percentual do acúmulo de nitrogênio (a), fósforo Figura 10. (b) e potássio (c) na copa, estipe, cachos e inflorescências masculinas do dendezeiro, em função da idade.

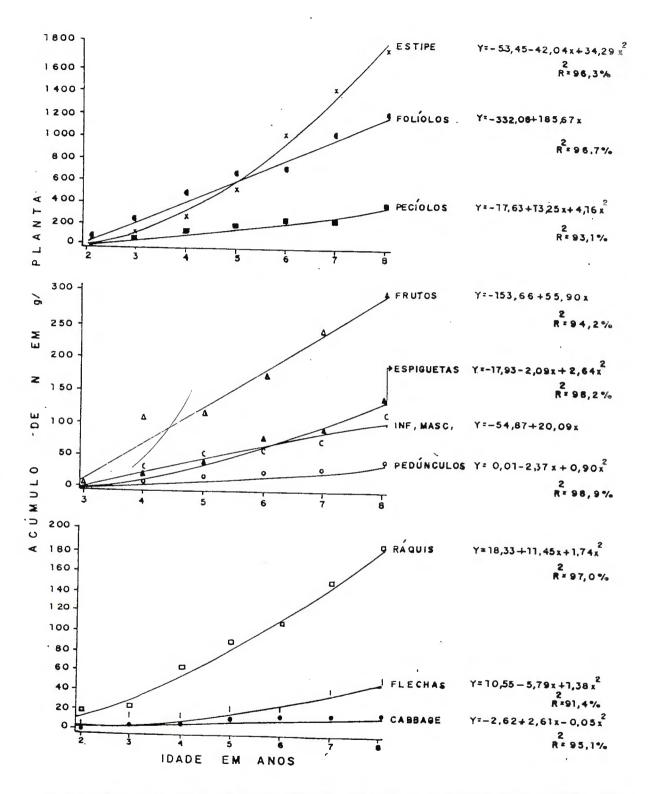


Figura 11. Equações de regressão do acúmulo de nitrogênio nos diferentes componentes do dendezeiro, em função da idade.

Na África, BACHI (1965), constatou aumento na concentração de fósforo nos foliolos da folha 17 com a idade das palmas.

A sequência apresentada nos componentes da planta em relação a concentração de fósforo foi: "cabbage" > inflorescências masculinas > estipe > flechas/frutos > foliolos > espiguetas/pedúnculos > ráquis/peciolos (Tabela 10). Nota-se portanto, à semelhança do nitrogênio, que o "cabbage" foi o mais rico em fósforo, enquanto o ráquis e pecíolos foram os mais pobres. Dentre os componentes formadores da copa, novamente o "cabbage", flechas e foliolos se apresentaram com os mais altos teores de fósforo. O alto teor de fósforo contido nas inflorescências masculinas fornece indicações da importância e necessidade desse elemento para sua formação e na reprodução do dendezeiro.

Altos teores de fósforo (0,32%) nas inflorescências masculinas também foram encontrados por NG et al. (1969). Os resultados obtidos no presente trabalho, caso venham a se confirmar em outras pesquisas mais específicas sobre o assunto, podem assumir, do ponto de vista da nutrição, importância fundamental do fósforo para a formação de inflorescências masculinas na referida região, onde os solos são normalmente carentes nesse nutriente. Talvez isto explique as frequentes detecções de má formação de cachos por deficiência de polinização nesta plantação, principalmente nos primeiros anos de colheita.

As concentrações de fósforo encontradas nos folíolos, flechas, ráquis (a partir do sexto ano) e estipe (a partir do quinto ano) são bastante semelhantes às obtidas na Malásia por NG et al. (1968a), enquanto os teores no "cabbage" foram até 2,0 vezes mais altos no Brasil.

A concentração média de fósforo nas espiguetas, no oitavo ano, foi cerca de 50% mais baixa das
obtidas por NG & THAMBOO (1967), enquanto para os pedúnculos
e inflorescências masculinas os valores foram compatíveis aos
daqueles autores. A sequência decrescente nos componentes
formadores dos cachos foi a mesma encontrada para o
nitrogênio. A faixa de concentração média de fósforo nos
componentes dos cachos variou de 0,04% (espiguetas) a 0,20%
(frutos), enquanto a encontrada pelos pesquisadores malaios,
foi de 0,0065% (casca) a 0,29% (amêndoa).

A concentração ótima de fósforo na folha 17 do dendezeiro, segundo UEXKULL & FAIRHURST (1991), situa-se entre 0,15% a 0,19%, e que abaixo de 0,13% indica séria deficiência, especialmente se ocorrer uma alta relação com nitrogênio. Para o sudeste da Ásia, NG (1986), propõem as seguintes faixas ótimas para fósforo na folha 17: na idade de 1 a 3 anos de 0,17% a 0,19%; 4 a 5 anos de 0,16% a 0,17%; 10 a 15 anos de 0,155% a 0,165%; 16 a 20 anos de 0,150% a 0,155% e finalmente para dendezeiros de 21 a 25 anos de 0,140% a 0,150% de P. Percebe-se portanto, uma redução nos teores de fósforo com o envelhecimento das plantas.

OLLAGNIER & OCHS (1981), verificaram que o nivel crítico do fósforo na folha 17 do dendezeiro é dependente do nitrogênio, e que existe uma relação linear entre os teores foliares desses dois elementos, que é P(%) = 0,048% N + 0,039, com aplicação universal. Essa universalidade parece ter validade pelo menos para as condições do estado do Pará, pois PACHECO et al. (1985), ao estudarem a relação N/P em dois experimentos no município de Benevides, obtiveram a equação P% = 0,0546% N + 0,0223 que na prática não difere muito da encontrada pelos pesquisadores franceses.

Aceitando-se a validade dessa equação para os folíolos da planta inteira, tem-se na Tabela 15, a situação nutricional do fósforo, em função dos teores de nitrogênio deste trabalho. Verifica-se portanto, que o teor ótimo calculado de fósforo, a partir do terceiro ano, foi de 0,15%, enquanto o obtido no presente trabalho em função da idade variou de 0,12% a 0,14%, indicando uma leve carência de fósforo nas plantas, com exceção do segundo ano. De acordo com esta equação as plantas do segundo ano de idade estariam com ótimo teor de fósforo.

O fósforo tem se mostrado indispensável para a cultura do dendezeiro no Estado do Pará, necessitando de atenção especial, pelo fato da grande maioria dos solos paraenses serem pobres nesse nutriente. Como agravante da situação esses solos apresentam alta capacidade de sorção de fósforo, conforme enfatiza SINGH et al. (1983).

Tabela 15. Concentração ótima de fósforo em função dos teores de nitrogênio nos folíolos da planta inteira em decorrência de idade.

Idade (anos)	Tear (%)		Teor ótimo de P
	N	P	P% = 0,048% N + 0,039
2	1,48	0,11	P% = 0,048 × 1,48 + 0,039 = 0,11
3	2,23	0,13	$P\% = 0,048 \times 2,23 + 0,039 = 0,15$
4	2,38	0,12	$P\% = 0,048 \times 2,38 + 0,039 = 0,15$
5	2,25	0,12	$P\% = 0,048 \times 2,25 + 0,039 = 0,15$
6	2,26	0,13	$P\% = 0,048 \times 2,26 + 0,039 = 0,15$
7	2,30	0,14	$9\% = 0,048 \times 2,30 + 0,039 = 0,15$
8	2,26	0,13	$P\% = 0,048 \times 2,26 + 0,039 + 0,15$

Os valores mínimos e máximos das concentrações de fósforo nos diferentes componentes da planta, estão contidas na Tabela 11. Percebe-se que os teores de fósforo, de um modo geral, sofreram menos flutuação que os de nitrogênio. As maiores amplitudes na concentração de fósforo foram proporcionadas pelo estipe, enquanto as menores pelos foliolos.

4.2.2.2. Acúmulo

Os resultados do acúmulo médio de fósforo com as respectivas significâncias, em função das idades das plantas encontram-se na Tabela 12. A quantidade acumulada de fósforo pelo dendezeiro, em todos os seus componentes, aumentou com a idade, sendo que, como no caso do nitrogênio o maior acúmulo ocorreu no oitavo ano, proporcionado pelo estipe, com 159,05 g/planta correspon-dendo a 39% do total da planta, enquanto a menor acumulação ocorreu no cabbage" com 4,67 g/planta, representando somente 1%. No geral, a ordem decrescente no conteúdo de fósforo foi: estipe > folíolos > frutos > pecíolos > inflorescências masculinas > ráquis > espiguetas > flechas > "cabbage" = pecúnculos. Conforme pode ser visto na Tabela 13, o estipe apresentou maior conteúdo de fósforo, somente a partir do quarto ano, sendo antes superado pelos folíolos.

Chama atenção, o recrutamento de fósforo pelos frutos, chegando a corresponder na média das idades em até 10% em relação aos demais componentes da planta, demonstrando de imediato, a importância desse nutriente para a sua formação. Considerando que os frutos são colhidos (ou exportados) a reposição desse nutriente, pela adubação. assume maior importância ainda.

Comparando-se os valores do acúmulo de fósforo, do presente trabalho com os de TINKER & SMILDE

(1963), na idade correspondente ou seja, no sétimo ano, verifica-se que foram 2,0 vezes maiores nos folíolos e 3,0 no estipe, porém no "cabbage" 1,6 vezes menores, para no ráquis serem exatamente iguais.

A situação é completamente diferente quando se traça um paralelo com os resultados do acúmulo de fósforo obtidos na Malásia, por NG et al. (1968a). Somente a partir do sétimo ano, nos folíolos e "cabbage" e no oitavo, no ráquis e estipe, observou-se maior quantidade acumulada de fósforo nas condições brasileiras. O recrutamento de fósforo nas flechas no país oriental foi superior em todos os anos.

A copa apresentou marcante acumulação de fósforo, até o quinto ano, chegando a atingir o máximo de 70,0% no segundo ano, em relação ao estipe (Tabela 14). A partir do sexto ano essa supremacia foi de apenas 3% em favor da copa para, a partir do sétimo, ser superada pelo estipe. A Figura 9b, apresenta a comparação do acúmulo de fósforo entre a copa, estipe, cachos e inflorescências masculinas com as respectivas equações de regressão. Nota-se, que a quantidade acumulada de fósforo na copa, estipe e cachos pode ser estimada por equações do segundo grau ascendentes, enquanto nas inflorescências masculinas, pela do primeiro ascendente.

Nas pesquisas realizadas por NG et al. (1968a), o estipe assumiu mais precocemente a dominância do conteúdo de fósforo em relação à copa, ou seja aos 34 meses. O recrutamento de fósforo pelos cachos chegou a alcançar até

20% em relação aos demais componentes, enquanto nas inflorescências masculinas foram baixas, com máximo de 7,5%. A Figura 10b, expôre de modo mais acurado a distribuição percentual de fósforo na copa, estipe, cachos e inflorescências masculinas.

A equação de regressão que melhor se ajustou a quantidade de fósforo acumulada nos folíolos e inflorescências masculinas foi a linear ascendente, e para os demais componentes, a quadrática ascendente (Figura 13).

4.2.3. Potássio

4.2.3.1. Concentração

Os resultados da concentração média de potássio, nos componentes do dendezeiro, em função da idade constam na Tabela 10 e podem ser melhor visualizados através da Figura 14. À semelhança do nitrogênio e fósforo também ocorreu variação na concentração de potássio com os anos. Ao contrário daqueles nutrientes, houve acentuada redução de potássio nos folíolos, pecíolos, ráquis, "cabbage", flechas, pedúnculos e frutos com o tempo. No estipe, a tendência foi de aumentar o teor de potássio. As mais altas concentrações de potássio foram no "cabbage", estipe e flechas e a mais baixa no raquis, folíolos e pecíolos. De maneira geral, a

ordem de concentração de potássio nos diferentes componentes da planta foi: "cabbage" > estipe > flechas > pedúnculos > inflo-rescências masculinas > frutos > espiguetas > pecíolos > ráquis.

A redução nos teores de potássio nos folíolos, ráquis, flechas e estipe (após o quinto ano) com a idade também foi observado por NG et al. (1968a).

A redução marcante na concentração de potássio com a idade, na maioria dos componentes das palmeiras mais velhas, pode indicar maior necessidade de potássio na plantação comercial. Este elemento pode constituir no futuro, um fator bastante limitante para a produção, caso não seja adotado um programa eficiente e eficaz de adubação potássica. Isto porque os solos da plantação são muito pobres em potássio, cujos teores encontrados nas áreas amostradas variaram entre 0,05 a 0,07 meq/100 cm³ (Tabela 4).

Como agravante da situação, tem sido observado na plantação comercial, e confirmado, nos experimentos de nutrição e adubação, uma redução nos teores de potássio e magnésio como consequência dos altos teores de cálcio provenientes da adubação fosfatada, aliado ao fato do cloro favorecer a absorção desse cátion, através do efeito sinérgico.

Os resultados dos experimentos que estão sendo conduzidos na própria plantação, já confirmam a grande exigência desse nutriente pelo dendezeiro na Amazônia paraense (BOTELHO et al., 1993).

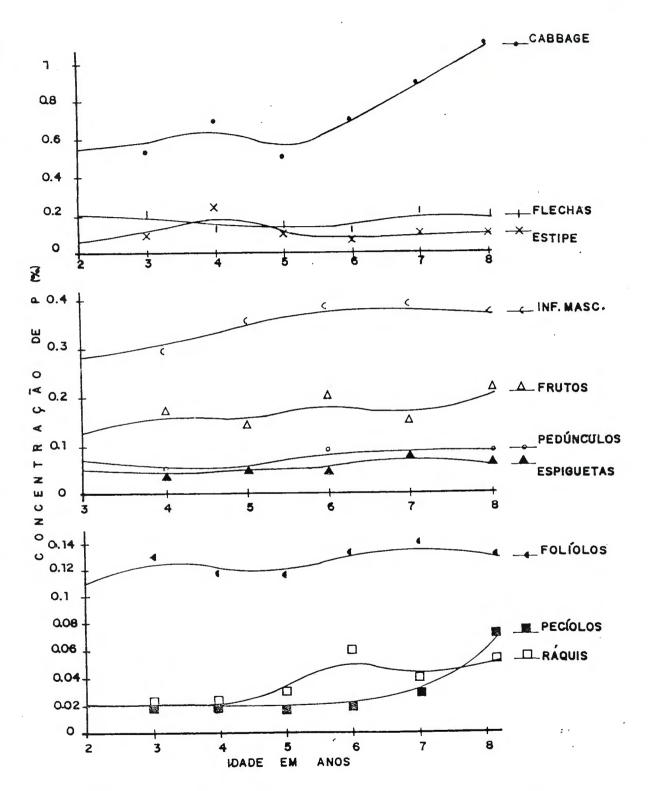


Figura 12. Concentração de fósforo nos diferentes componentes do dendezeiro, em função da idade.

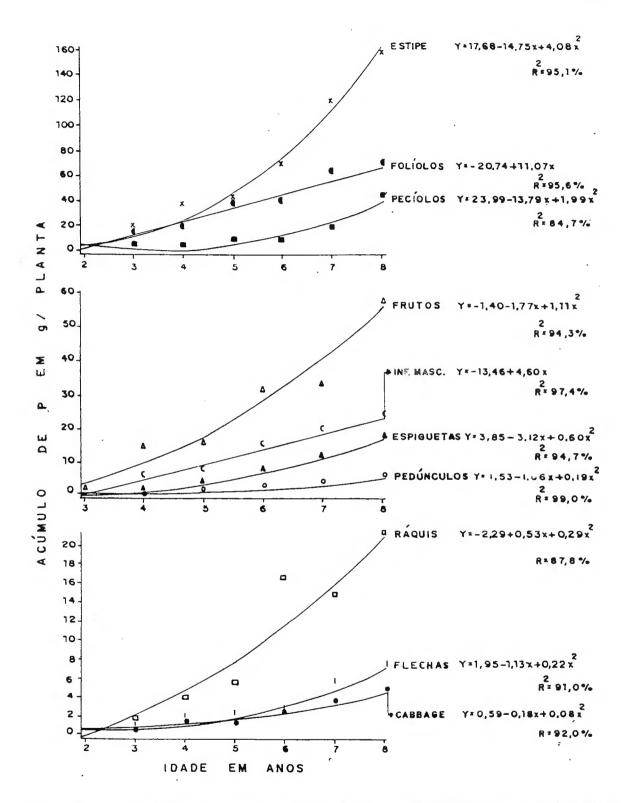


Figura 13. Equações de regressão do acúmulo de fósforo nos diferentes componentes do dendezeiro, em função da idade.

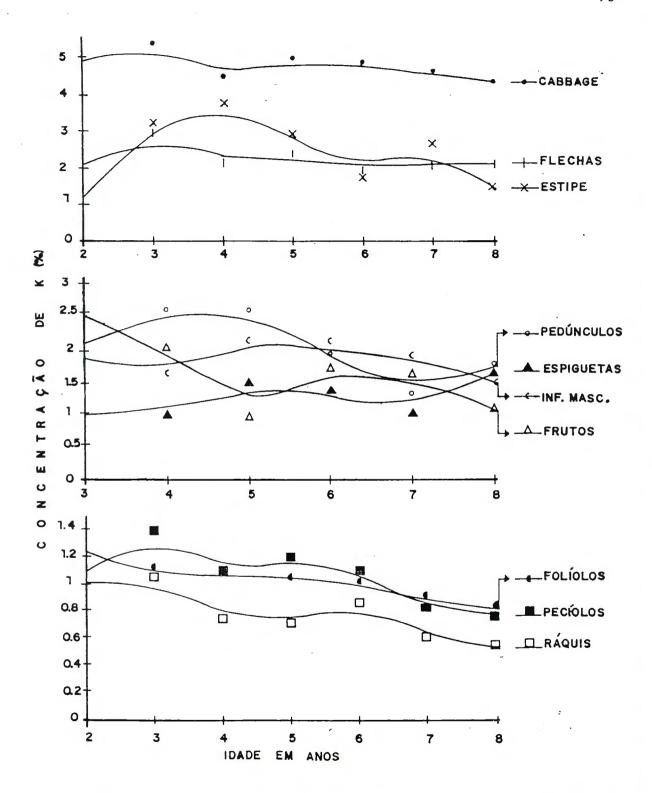


Figura 14. Concentração de potássio nos diferentes componentes do dendezeiro, em função da idade.

Comparando os teores de potássio determinados no presente trabalho com os de NG et al. (1968a), nas idades correspondentes, percebe-se nos folíolos até o sexto ano, valores bem semelhantes para, no sétimo e oitavo anos serem mais altos na Malásia. No ráquis os teores do elemento no Pará foram mais baixos, entretanto para os componentes flechas, "cabbage" e estipe eles foram mais altos do que os obtidos na Malásia.

Os teores médios de potássio nas espiguetas, com exceção da localidade Serdang, foram cerca de 1,3 vezes mais baixos, quando comparados aos obtidos por NG & THAMBOO (1967). No pedúnculo os teores foram muito altos na Malásia, chegando a atingir a média de 6,61%, quando o máximo alcançado neste trabalho foi de 2,63%, no terceiro ano.

Nas inflorescências masculinas, os teores mais compatíveis do Brasil com os obtidos no extremo oriente foram os do quinto ano, ou seja 2,65% - Malásia contra 2,52% - Brasil. Essa maior concentração de potássio nos componentes do cacho e inflorescência masculina, na Malásia, em relação aos do presente trabalho, deve-se principalmente aos altos teores do elemento nos solos daquela ecorregião, que chegam a apresentar, por exemplo, em Jerangau, 27 ppm.

A sequência decrescente nos três componentes dos cachos estudados foi: pedúnculos > frutos > espiguetas, ao passo que a encontrada por NG & THAMBOO (1967), foi pedúnculo > espigueta> amêndoa > polpa > casca. A faixa de

concentração média de potássio, nos constituintes dos cachos variou de 0,95% (frutos) a 2,63% (pedúnculos), enquanto na Malásia, considerando as três localidades de 0,08% (casca) a 5,91% (pedúnculo).

Na opinião de UEXKULL & FAIRHURST (1991), a concentração de potássio nos folíolos da folha 17, ao contrário dos outros elementos, não tem sido boa referência para se estimar o estado nutricional do dendezeiro. Contudo, consideram como valores normais a faixa entre 0,9% a 1,3%. Neste caso, os teores encontrados nos folíolos da planta, com exceção do sétimo e oitavo anos, que se encontram abaixo do limite inferior, estariam dentro do intervalo indicado.

Na tentativa de encontrar um componente que melhor diagnosticasse o estado nutricional do potássio no dendezeiro, TEOH & CHEW (1989), conduziram pesquisas e concluíram que o ráquis da folha 17, foi mais sensível para desempenhar esse papel do que os folíolos. Os autores sugeriram inclusive, a seguinte classificação: alto > do que 1,60% K; adequado de 1,31 a 1,60% K; marginal de 1,01 a 1,30% K e baixo < do que 1,01% K. Com base nessa classificação, os teores de potássio no ráquis deste trabalho, com exceção do terceiro ano, que seria considerada marginal, se enquadrariam como baixos. Entretanto, é preciso ressaltar que o referencial foi o ráquis da folha 17, e não com os ráquis de toda a planta.

RUER (1966), concluiu que o nível crítico do potássio nos folíolos da folha 17 pode depender da

intensidade luminosa, ficando próximo de 1,2% para as regiões onde a insolação útil seja superior ou igual a 1800 horas. Pesquisas mais recentes, têm mostrado que o nível crítico de potássio nos folíolos depende também do déficit hídrico de cada ecorregião (QUENCEZ & TAFFIN, 1981; OLLAGNIER et al., 1987).

As amplitudes nas variações das concentrações de potássio foram maiores do que as de nitrogênio e fósforo (Tabela 11). As maiores flutuações ocorreram no estipe e as menores nos folíolos. Essas variações nas concentrações de potássio no estipe podem indicar também, a necessidade de um suprimento constante desse elemento para os demais componentes da planta, particularmente para os cachos.

4.2.3.2. Acúmulo

A Tabela 12, contém os resultados do acúmulo médio de potássio com o respectivo teste de comparação de médias. Infere-se que em todos os componentes do dendezeiro ocorreu aumento da quantidade acumulada de potássio, com o decorrer da idade. Maior acúmulo foi proporcionado pelo estipe no sétimo ano, com 3196,11 g/planta e menor pelos pedúnculos, no terceiro ano com 3,78 g/planta. No oitavo ano houve redução no conteúdo de potássio no estipe, podendo indicar uma possível remoção para outros componentes. A dominância dos folíolos se manifestou somente no segundo ano

1

1

題 題

1

匷

屋

para posterior-mente, ser sobrepujado pelo estipe que recrutou até 64% de potássio, em relação aos demais componentes (Tabela 13).

Fica portanto demonstrado, ser o tecido do estipe o principal armazenador e distribuidor de potássio no dendezeiro. O tempo em que o estipe assumiu a posição dominante do acúmulo de potássio em relação aos demais componentes foi aos 36 meses, sendo juntamente com o enxofre, os macronutrientes mais precoces. O armazenamento prematuro e a boa reserva de potássio no estipe, é desejável, pois permitirá um estoque desse nutriente, podendo inclusive reduzir os riscos de uma queda brusca na produção, caso a planta venha necessitar desse elemento. Os acúmulos obtidos, em relação aos encontrados por TINKER & SMILDE (1963), no sétimo ano, foram 1,7 vezes mais elevados nos foliolos, 1,8 no ráquis e 10,0 vezes no estipe. A exceção foi representada pelo "cabbage", que foi 2,3 vezes menor.

Essa superioridade do conteúdo de potássio sobre os valores obtidos na Nigéria, pode ser explicada, além do que já foi discutido para o nitrogênio, pelas diferenças entre o material genético, condições de clima e solo, e manejo cultural distinto na região da Amazônia. Por outro lado, os conteúdos de potássio encontrados por NG et al. (1968a), no ráquis foram de 1,3 a 6 vezes maiores, nas flechas de 1,7 a 9,7 e no estipe de 1,3 a 12,6 vezes. Nos folíolos e "cabbage" essa supremacia foi bem menor, tanto que a partir do quarto ano, as diferenças foram bem reduzidas.

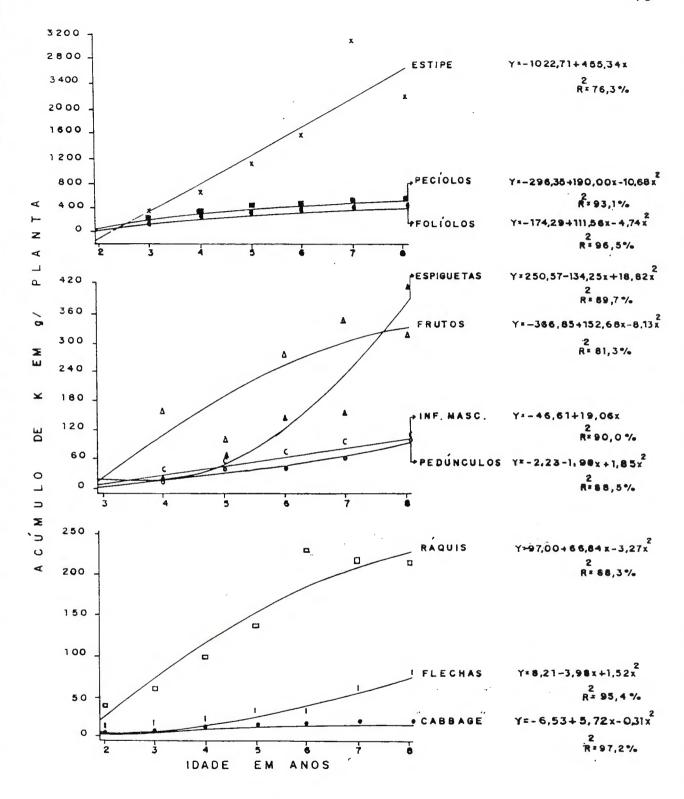


Figura 15. Equações de regressão do acúmulo de potássio nos diferentes componentes do dendezeiro, em função da idade.

圖

100

厦

靈

理

邇

國國國

De modo geral, a sequência dos componentes no conteúdo em potássio foi: estipe > pecíolos > folíolos > frutos > ráquis > espiguetas > inflorescências masculinas > pedúnculos > flechas > "cabbage". Chama a atenção os pecíolos como componente mais importante da copa no papel de armazenador de potássio. Nos demais macronutrientes ele tem se apresentado em segundo lugar. Portanto, deve ser dado aos pecíolos a qualidade de principal armazenador de macronutrientes na copa, e não ao ráquis. Isso porque, nas pesquisas desenvolvidas por NG et al. (1968a), pelo fato de não ter trabalhado com os pecíolos, ele atribuiu ao ráquis o papel de principal estocador de macronutrientes na copa.

A Tabela 14 mostra que somente a partir do o estipe apresentou maior acúmulo de potássio do quinto ano, que a copa, chegando a 64,3% de participação no sétimo ano. A Figura 9c, expôe visualização mais detalhada do comportamento cachos e inflorescências masculinas, entre a copa, estipe, suas respectivas equações mostrando inclusive as regressão. Nota-se, que a quantidade acumulada de potássio na copa e nos cachos podem ser estimada por equações do segundo grau, enquanto que para o estipe e inflorescências masculinas do primeiro grau. Na Malásia, o estipe já aos por equações 2,5 anos, exibiu maior conteúdo do nutriente do que a copa, devido principalmente à dominância do crescimento vertical. A contribuição dos cachos variou de 2,85 a 19,7%, enquanto as das inflorescências masculinas foram de 1,6 a 2,4%. A Figura 10c, apresenta a distribuição percentual do recrutamento de potássio na copa, estipe, cachos e infloresc≘ncias masculinas.

A equação de regressão melhor ajustada à variação da quantidade acumulada de potássio em relação às idades, no ráquis, flechas, "cabbage", peciolos, folíolos, espiguetas, frutos e pedúnculos foi a quadrática ascendente, enquanto que para o estipe e inflorescências masculinas, a linear ascendente foi a melhor (Figura 15).

4.2.4. Cálcio

4.2.4.1. Concentração

Os resultados analíticos da concentração média encontram-se na Tabela diferentes 10 nos de cálcio dendezeiro em função da idade, com o componentes do respectivo teste de comparação de médias e na Figura 16, uma melhor visualização do comportamento desses órgãos. O teste de Tukey, ao nível de 5% de significância, registrou variação na concentração de cálcio nos órgãos, com as Depreende-se que nos componentes pecíolos, ráquis, flechas, inflorescências masculinas, pedúnculos e frutos concentração do elemento aumentou com o decorrer des anos.

No estipe, o incremento ocorreu até o quarto ano para posteriormente decrescer. Nas espiguetas houve aumento dos teores até o terceiro ano, diminuindo nos

subsequentes. Por outro lado, a concentração de cálcio nos foliolos não variou com a idade das palmas. Na África em La Mé e Pobé, BACHY (1965) constatou redução nos teores do nutriente, em foliolos da folha 17 em dendezeiros de dez anos, porém em La Dibamba ocorreu aumento.

Novamente, o "cabbage" se apresentou como o componente mais rico em cálcio. No geral, a ordem decrescente na concentração foi: "cabbage" > inflorescências masculinas > folíolos > estipe > frutos > flechas > pecíolos > ráquis > pedúnculos > espiguetas.

A concentração de cálcio com exceção dos constituintes dos cachos (frutos, espiguetas e pedúnculos) foram bem mais altas do que as obtidas na Malásia por NG et al. (1968a). Nesse país oriental os teores de cálcio no "cabbage" não foram os mais altos e sim os dos foliolos.

A explicação mais provável dessa maior concentração de cálcio nas condições da Amazônia paraense, deve-se à aplicação frequente de adubos fosfatados, tais como superfosfato triplo, fosfino e, mais recentemente, o fosfato de Carolina do Norte, os quais contém cálcio.

Os teores médio de cálcio nas espiguetas foram compatíveis com os observados por NG & THAMBOO (1967), somente para a localidade de D.Durian, sendo inferior para as demais. Nos pedúnculos os teores do quarto ao sexto ano, foram mais altos em relação aos da citada localidade, entretanto, para as outras, foram bem mais baixos, principalmente em relação à de Serdang.

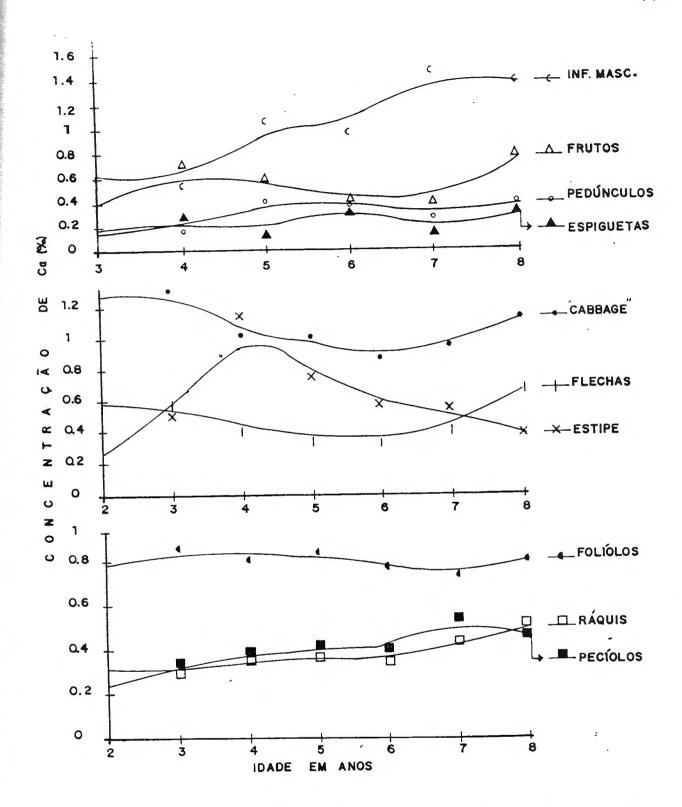


Figura 16. Concentração de cálcio nos diferentes componentes do dendezeiro, em função da idade.

No tocante às inflorescências masculinas, era de se esperar comportamento semelhante ao dos pedúnculos e espiguetas, entretanto tal fato não ocorreu, pois os teores médios do sétimo e citavo anos, quando confrontados com os de NG & THAMBOO (1967), foram mais altos, principalmente para as localidades D.Durian e Jerangau. Uma possível explicação para tais resultados, seria que as inflorescências masculinas na Tenera, utilizada neste trabalho, sejam mais exigentes e responsivas ao cálcio do que a variedade Dura, malaios acima referidos, necessitando pelos empregada entretanto, de estudos mais acurados. A faixa de concentração cachos, variou de 0,14 constituintes dos nos média (espiguetas) a 0,61% (frutos), ao passo que a observada na Malásia, a média de tods as amostras variou de 0,021 (casca) a 0,47% (pedúnculo) de cálcio.

O nivel crítico de cálcio, de acordo com BACHY (1965), é de 0,60% nos folíolos da folha 17 do dendezeiro. Com base nessa afirmação, percebe-se que os teores de cálcio dos folíolos de toda a planta, constantes na Tabela 10, estão bem acima do nível crítico, evidenciando excesso desse elemento. Esses resultados, ratificam os obtidos nos experimentos e na própria plantação comercial, ou seja, o excesso de cálcio, modificando a dinâmica de absorção e utilização dos outros cátions, tais como, do potássio e magnésio. Essa maior absorção de cálcio também tem sido favorecida pelo efeito sinérgico do cloro proveniente da adubação com cloreto de potássio.

Os intervalos de variação na concentração de cálcio, concidos na Tabela 11, mostram os componentes "cabbage" e inflorescências masculinas com maiores flutuações. Os teores de cálcio apresentaram maior variação do que os de nitrogênio e fósforo, porém menores em relação ao potássio.

4.2.4.2. Acúmulo

Os resultados do acúmulo médio de cálcio nos diferentes componentes do dendezeiro, em decorrência das idades, com o respectivo teste comparativo de médias, estão inseridos na Tabela 12. Depreende-se, que em todos os órgãos houve incremento significativo no conteúdo de cálcio, com a idade das plantas, sendo mais alto no oitavo ano.

Comparando-se o conteúdo de cálcio com os encontrados por TINKER & SMILDE (1963), verifica-se que os valores nas plantas de vinte e dois anos na Nigéria, correspondem às do sétimo para o caso dos folíolos e ráquis, e sexto para o estipe. Por outro lado, os conteúdos no "cabbage" foram até 10 vezes mais altos do que os do presente trabalho. Isso possivelmente possa ser explicado pela coleta do "cabbage", pois ainda há dúvidas sobre onde iniciam e terminam os tecidos pertencentes a esse componente. Acredita-se na possibilidade do componente "cabbage" ter sido superestimado por ocasião da coleta, na Nigéria.

A comparação do recrutamento de cálcio com os dados obtidos por NG et al. (1968a), mostra uma situação completamente diferente. No caso dos folíolos, por exemplo, nas condições da Amazônia, desde o quarto ano, a quantidade de cálcio acumulada foi maior, chegando até 3,5 vezes; no ráquis desde o quinto ano alcançando até 4,0 vezes mais; no "cabbage" a partir do terceiro, atingindo até 4,6 vezes, enquanto no estipe iniciou no quinto, sendo até 2,1 vezes mais elevado. Essa superioridade da quantidade acumulada de cálcio, no Brasil em relação à Malásia, além das razões já expostas no item concentração, pode ser possívelmente atribuída à uma maior exigência de cálcio da variedade Tenera em relação à Dura, necessitando entretanto de maiores informações.

A distribuição percentual do acúmulo de cálcio nos diferentes componentes do dendezeiro, contida na Tabela 12, mostra em geral a sequência: estipe > folíolos > pecíolos > ráquis > frutos > inflorescências masculinas > espiguetas > flechas/pedúnculos > "cabbage". Somente a partir do quarto ano o estipe assumiu a dominância do conteúdo de cálcio em relação aos folíolos, atingindo o máximo de 43% no sexto. ano. A exemplo do ocorrido para o fósforo e potássio, deve-se ressaltar a importância do estipe como componente estocador de cálcio, vindo em segundo lugar, os folíolos e, após, os pecíolos.

Os resultados da avaliação do conteúdo de cálcio entre a copa, estipe, cachos e inflorescências

masculinas, que constituem todos os componentes do dendezeiro, encontram-se na Tabela 14. Observa-se, que em nenhuma ocasião o acúmulo de cálcio na copa foi superado pelo do estipe, chegando à valores percentuais menos equidistantes no sexto ano, para em seguida, distanciarem-se novamente. A análise de regressão mostrou que o acúmulo de cálcio na copa e estipe pode ser calculado por equações do primeiro grau ascendente, enquanto para cachos e inflorescências masculinas, pela do segundo grau ascendente (Figura 17a).

O maior recrutamento de cálcio na copa, em termos percentuais, ocorreu no segundo e terceiro anos com 81,4% e 71,7%, respectivamente, e o menor, no sexto ano com 43% (Tabela 14). A distribuição percentual do acúmulo de cálcio na copa, estipe, cachos e inflorescências masculinas pode ser melhor visualizada através da Figura 18a. A época em que o estipe assumíu posição dominante no conteúdo de cálcio, em relação à copa, no trabalho desenvolvimento por NG et al. (1968a), registrou a partir do quinto ano, não estando portanto de acordo com os resultados obtidos na Amazônia.

Nos cachos o maior acúmulo de cálcio ocorreu no oitavo ano com 292,36 g/planta, o que corresponde a 41,8 kg/ha. Nas inflorescências masculinas, maior recrutamento de cálcio aconteceu também no oitavo ano com 88,05 g/planta, que na densidade populacional de 143 plantas por hectare, significa 12,6 kg/ha. Com exceção do terceiro ano, o conteúdo de cálcio nos frutos foram de 1,7 a 6,8 vezes maiores do que os das inflorescências masculinas.

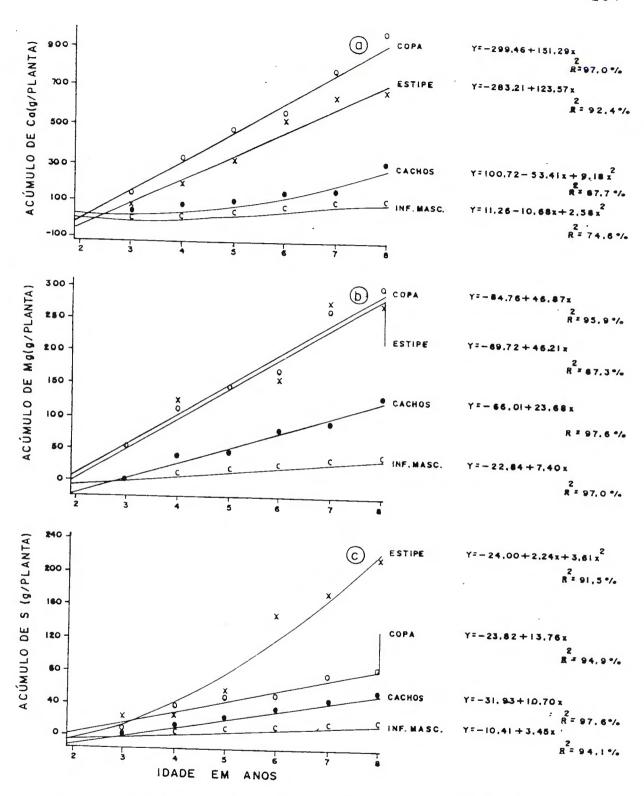


Figura 17. Acúmulo de cálcio (a), magnésio (b) e enxofre (c) na copa, estipe, cachos e inflorescências masculinas do dendezeiro, em função da idade.

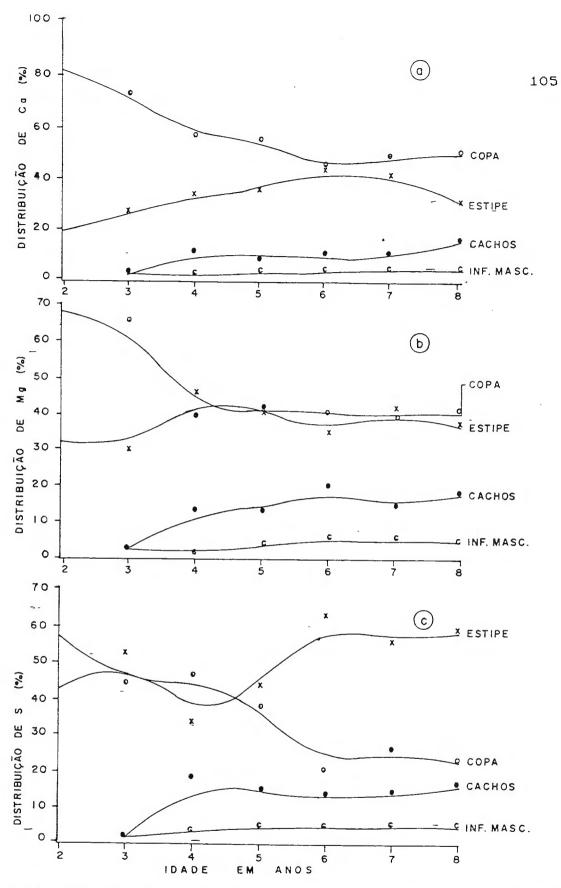


Figura 18. Distribuição percentual do acúmulo de cálcio (a), magnésio (b) e enxofre (c) na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade.

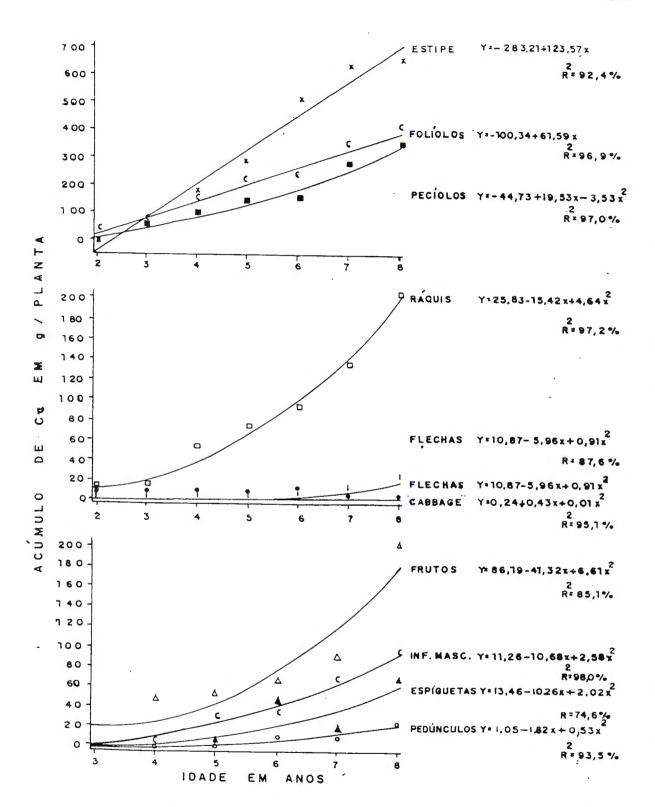


Figura 19. Equações de regressão do acúmulo de cálcio nos diferentes componentes do dendezeiro, em função da idade.

Foi ajustada a equação de regressão da variação da quantidade acumulada de cálcio em decorrência das idades das palmeiras. Para o estipe e folíolos o modelo mais aplicável foi o linear ascendente, enquanto para os demais foi o quadrático ascendente (Figura 19).

4.2.5. Magnésio

4.2.5.1. Concentração

A Tabela 10, contém os resultados da concentração média de magnésio nos componenes do dendezeiro em função da idade com o respectivo teste de comparação de médias, enquanto a Figura 20, mostra com maior detalhe o peciolos, "cabbage", órgãos. Nos comportamento desses flechas, inflorescências masculinas e espiguetas foi mais concentração de magnésio com o evidente o aumento da transcorrer das idades das palmeiras. Nos foliolos, estipe, pedúnculos e frutos houve tendência de aumento no teor de magnésio, nos primeiros anos para, nos subsequentes, ocorrer redução. Diminuição nos teores de magnésio nos foliolos da folha 17, com a idade, também foi observado por BACHY (1965) e nas pesquisas realizadas por HASSELO & BRZESOWSKY (1965), sendo que neste último, ficou evidente a influência do clima, mais especificamente, da precipitação, sobre a variação nesse elemento.

No trabalho de NG et al. (1968a), os teores de magnésio no estipe, flechas e ráquis reduziram com a idade,

os de "cabbage" aumentaram e os dos folíolos mostraram-se estáveis.

Em geral a concentração de magnésio obedeceu à seguinte seguência decrescente: "cabbage" > inflorescências masculinas > frutos > folíolos > estipe > flechas > pecíolos > espiguetas > ráquis/pedúnculos. Novamente, o "cabbage" se apresentou com teores mais altos de magnésio, compatíveis com os do fósforo, porém mais baixos do que os obtidos para nitrogênio, potássio e cálcio. As menores concentrações de magnésio na copa foram encontradas no ráquis e peciolos, ao passo que, nos cachos a sequência foi frutos > espiguetas > pedúnculos. Chama atenção, os altos teores de magnésio fornecendo indicações inflorescências masculinas, importância e exigência desse nutriente para sua formação. Os teores médios neste componente, no sétimo ano (0,65%), foram ligeiramente mais baixos do que os encontrados por NG & THAMBOO (1967), em Serdang (0,75%), mais altos que os D.Durian Jerengau (0,59%) e bastante inferiores aos de (0,82%).

No que diz respeito aos folíolos, os teores de magnésio, obtidos no presente trabalho, foram compatíveis com os encontrados por NG et al. (1968a). Já os do ráquis e flechas, excluindo sétimo e oitavo anos, e os do "cabbage", exceto no quinto ano, foram mais baixos na Amazônia. No estipe o teor de magnésio foi superior ao da Malásia, no quarto, quinto e sétimo anos e inferior no segundo e sexto, para, praticamente igualarem-se no terceiro e oitavo anos.

As concentrações médias de magnésio nas espiguetas e pedúnculos foram muito baixas, quando comparadas com as obtidas por NG & THAMBOO (1967). Somente no quinto ano os pedúnculos apresentaram teores médios, compatíveis com uma das localidades. Essa concentração mais alta de magnésio nos constituintes dos cachos principalmente em Serdang - Malásia, deve-se, ao teores mais elevados no solo, sendo de 1,16 meq/100 cm³, como consequência da aplicação do calcário dolomítico.

A faixa de concentração média de magnésio nos componentes dos cachos variou de 0,07% (pedúnculos) a 0,42% (frutos), enquanto a observada na Malásia, foram entre 0,019% (casca) a 0,30% (espigueta).

O nível crítico de magnésio mais indicado para o dendezeiro é de 0,24% nos folíolos da folha 17, entretanto, esse valor tem sido colocado em dúvida, em determinados casos, inclusive na Amazônia paraense.

UEXKULL & FAIRHURST (1991), indicam a faixa de 0,30% a 0,40% de magnésio como ótima para o dendezeiro, e como deficientes os teores abaixo de 0,20%.

Com base no referencial do nível crítico de 0,24% de magnésio, verifica-se que os teores encontrados nos folíolos, de todas as folhas da planta, estão no segundo, sexto e sétimo anos abaixo desse valor, evidenciando a necessidade de suprimento desse nutriente. O oitavo ano se encontra exatamente no limite e, os demais ligeiramente acima

do nível. Na Amazônia paraense a deficiência de magnésio em dendezeiro tem se manifestado com valores de 0,15%, sendo que ultimamente, nas plantações de dendê da ecorregião de Tailândia, vêm ocorrendo com maior frequência e intensidade. As principais causas destas deficiências são: baixo teor desse elemento na maioria dos solos da Amazônia; interação com potássio, e principalmente com cálcio, como discutido anteriormente; facilidade de lixiviação desse cátion e material genético mais exigente em magnésio.

Os intervalos da variação na concentração de magnésio contidos na Tabela 11, mostram que as maiores flutuações foram proporcionadas pelo estipe, entretanto o valor superior obtido no quarto ano (Tabela 10) foi estranho, provavelmente devido à alguma contaminação da amostra. As variações do magnésio foram menores do que as de nitrogênio, cálcio e potássio e maiores do que as do fósforo.

4.2.5.2. Acúmulo

Pelos dados contidos na Tabela 12, verificase, de modo bastante claro, o incremento na quantidade
acumulada de magnésio, em todos os componentes do dendezeiro,
com as idades. Em geral, a quantidade foi maior nos dois
últimos anos, destacando o estipe, com 278,10 g/planta, vindo
em segundo lugar os foliolos com 122,73 g/planta,
correspondendo em termos percentuais, à 41% e 17%, respecti-

vamente, em relação aos demais componentes (Tabela 13). A
sequência geral no conteúdo de magnésio foi: estipe >
folíolos > pecíolos > frutos > ráquis > inflorescências
masculinas > espiguetas > flechas > "cabbage" > pedúnculos.

Comparando-se o recrutamento de magnésio com o obtido por TINKER & SMILDE (1963), na idade correspondente, ou seja, no sétimo ano, verifica-se que ele foi nos folíolos 1,5 vezes maiores, 2,1 vezes no ráquis e 1,9 vezes no estipe, porém no "cabbage" foram 3,0 vezes menores do que os alcançados na Nigéria. Situação diferente ocorreu quando se comparou o conteúdo de magnésio com os obtidos por NG et al. (1968a). Somente a partir do sétimo ano, nos folíolos, e no oitavo, no ráquis, houve maior recrutamento de magnésio na Amazônia. Nos demais componentes ocorreu supremacia dos valores alcançados na Malásia.

A Tabela 14, mostra os resultados comparativos do acúmulo de magnésio entre a copa, estipe, cachos e inflorescências masculinas. Nota-se que houve uma alternância entre os valores da copa e estipe. Somente no quarto e sétimo anos ocorreu dominio do estipe, enquanto nos demais anos foi na copa, com exceção do quinto ano, quando houve uma paridade. A análise de regressão mostrou que a quantidade acumulada de magnésio para a copa, cachos, estipe e inflorescências masculinas obedeceu uma equação de primeiro grau ascendente (Figura 17b), demonstrando necessidade crescente desse nutriente com a idade.

廽

THE REAL PROPERTY.

1

包

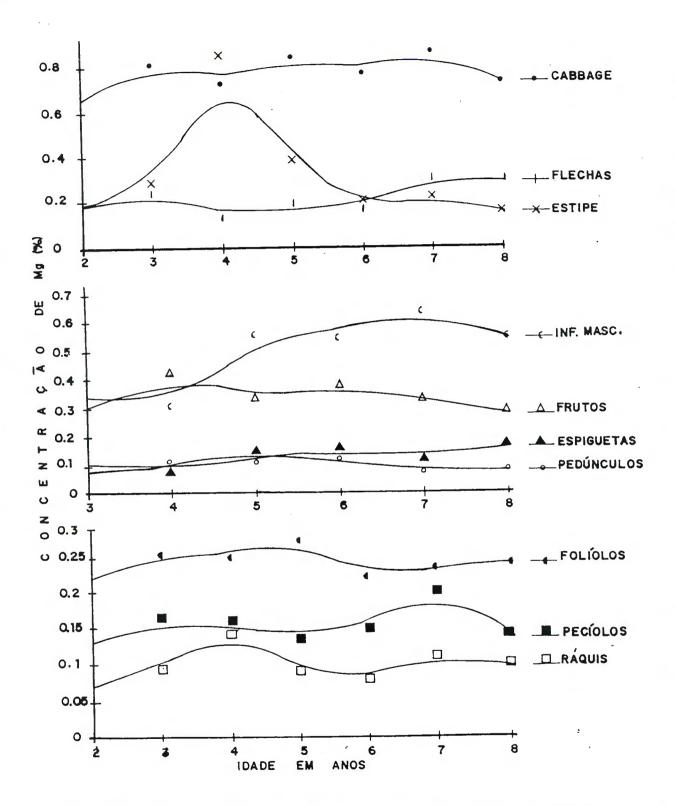


Figura 20. Concentração de magnesio nos diferentes componentes do dendezeiro, e função da idade.

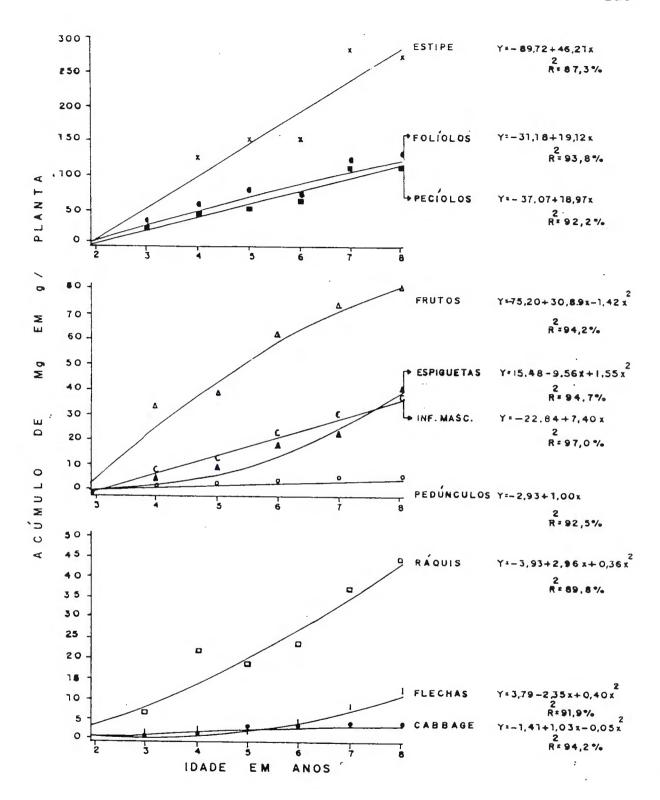


Figura 21. Equações de regressão do acúmulo de magnésio nos diferentes componentes do dendezeiro, em função da idade.

THE STATE OF

100

通照

100

THE REAL PROPERTY.

1000

1

TO H

I

THE REAL PROPERTY.

Table Street

T

11

A maior absorção de magnésio na copa em termos percentuais foi no segundo e terceiro anos, com 67,8% e 65,3%, respectivamente. Nos cachos a maior absorção ocorreu no sexto ano com 19,5%, enquanto nas inflorescências masculinas no oitavo com apenas 5,1%. A Figura 18b, mostra com detalhes a distribuição percentual do acúmulo de magnésio na copa, estipe, cachos e inflorescências masculinas.

A equação de regressão que melhor se ajustou à variação na quantidade acumulada de magnésio, nos diferentes componentes, em função da idade, para ráquis, flechas, cabbage", frutos e espiguetas foi a quadrática ascendente, enquanto para os demais foi a linear ascendente (Figura 21).

4.2.6. Enxofre

4.2.6.1. Concentração

Houve aumento da concentração de enxofre nos componentes do dendezeiro em função da idade, exceto no ráquis onde não houve variação e nas flechas com tendência à reducão (Tabela 11). A Figura 22, expôre com mais clareza o comportamento dos diferentes componentes com relação à concentração desse nutriente. O "cabbage" foi o mais rico em enxofre, ao passo que o "raquis" apresentou menor teor. Essa alta concentração de enxofre e dos demais elementos no "cabbage" já era esperada, pois trata-se do ponto de

crescimento das palmeiras, onde deve existir uma demanda crescente de nutrientes necessários aos vários processos enzimáticos.

A ordem decrescente na concentração de enxofre foi: "cabbage" > inflorescências masculinas > estipe > frutos > foliolos > pecíolos/flechas > pedúnculo > espiguetas > ráquis (Tabela 10). À semelhança do fósforo, cálcio e magnésio, as inflorescências masculinas se destacaram como segundo componente a apresentar maior teor de enxofre mostrando, também a importância desse nutriente para a sua constituição.

As concentrações médias de enxofre obtidas nos folíolos, ráquis, flecha e estipe foram muito baixas quando comparadas às encontradas por NG et al. (1968a). Essa superioridade na Malásia, pode ser explicada provavelmente pelo uso mais frequente de fertilizantes contendo enxofre, como por exemplo do sulfato de amônio. Casos de deficiências de enxofre, particularmente em dendezeiros jovens, têm sido registrado com mais frequência tendo, como causa principal o conter enxofre de fertilizantes concentrados sem (OLLAGNIER & OCHS, 1972; CALVEZ et al., 1976). No "cabbage" elas foram mais altas no terceiro, quarto e oitavo anos, mais baixas no segundo e quinto para então no sexto e sétimo anos tornarem equivalentes. NG et al. (1968a), também observaram nas palmeiras como um todo, tendência de aumento dos teores de enxofre com a idade.

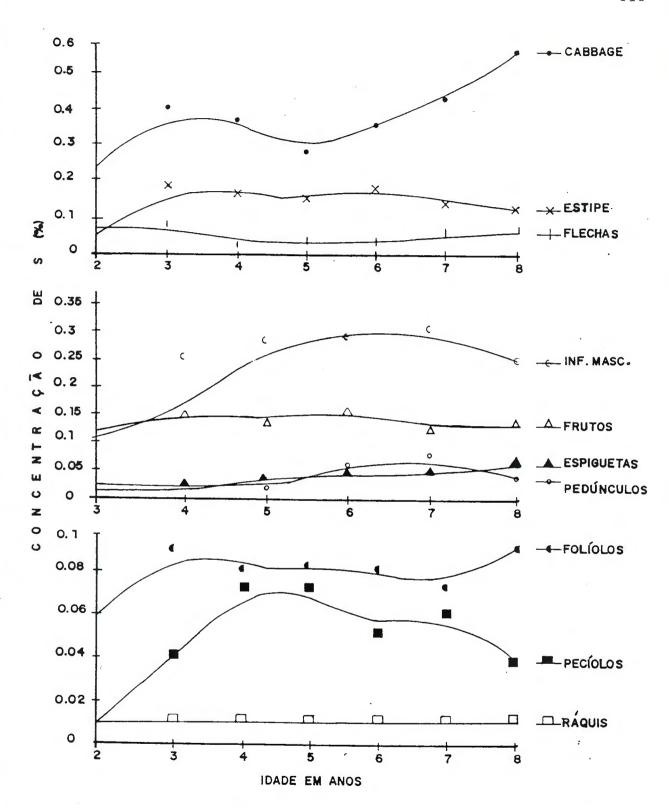


Figura 22. Concentração de enxofre nos diferentes componentes do dendezeiro, em função da idade.

OLLAGNIER (1973), estudando o efeito da aplicação de sulfato de magnésio em palmeiras com dois a sete anos na Costa do Marfim, constatou redução dos teores de enxofre nos folíolos da folha 17.

O nível crítico de enxofre de acordo com OLLAGNIER (1973), situa-se entre 0,200% a 0,230% na matéria seca dos folíolos da folha 17. Analisando-se os teores obtidos do elemento nos folíolos de todas as folhas, percebese que, são muito baixos em relação ao nível crítico, denotando a fraca nutrição do dendezeiro nesse nutriente na ecorregião de Tailândia-Pará.

As maiores flutuações na concentração de enxofre foram encontradas nas inflorescências masculinas (Tabela 11).

O comportamento de todos os componentes do dendezeiro com exceção dos folíolos, em relação aos teores dos macronutrientes, revelou em todas as idades a seguinte sequência decrescente: K > N > Ca > Mg > P > S. Nos folíolos, a exceção ficou por conta do nitrogênio que superou o potássio.

4.2.6.2. Acúmulo

Os resultados analíticos do acúmulo de enxofre, em porcentagem da matéria seca, nos diferentes componentes do dendezeiro, em função da idade, encontram-se

na Tabela 12. Em todos eles observou-se um aumento na quantidade acumulada com o tempo, atingindo o máximo po oitavo ano. Sobressaiu o estipe, com 213,76 g/planta e, em segundo lugar, os folíolos, com 43,02 g/planta, correspondendo em termos percentuais à 58% 12%. respectivamente, em relação aos demais (Tabela 13). A ordem decrescente em termos quantitativos do conteúdo de enxofre foi: estipe > foliolos > peciolos > frutos > inflorescências masculinas > espiguetas > ráquis > cabbage" > pedúnculos > flechas. O estipe à partir do terceiro ano, apresentou-se como principal componente armazenador de enxofre. Nos órgãos correspondentes à copa sobressairam-se os foliolos com maior acúmulo do nutriente, enquanto nos cachos os frutos foram os que mais acumularam esse elemento.

Os resultados da avaliação da quantidade acumulada de enxofre entre a copa, estipe, cachos e inflorescências masculinas, encontram-se na Tabela 14. Notase, que somente a partir do quinto ano, ocorreu dominância do estipe sobre a copa. Na Malásia, o estipe assumiu dominância sobre a copa, já no terceiro ano (NG et al., 1968a). A análise de regressão, mostrou que a quantidade acumulada de enxofre no estipe obedeceu à uma curva do segundo grau ascendente, enquanto que para a copa, cachos e inflorescências masculinas, obedeceu-se à uma equação linear ascendente (Figura 17c).

Com base na distribuição percentual, a maior acumulação de enxofre na copa, aconteceu no segundo ano, com

57% e a menor no sexto, com 20%. No estipe tal fato se registrou no oitavo ano com 57,9%, nos cachos 17,6%, no quarto ano e nas inflorescências com apenas 5% no setimo ano. Maior equidistância entre os valores percentuais do estipe e da copa, ocorreu à partir do sexto ano. O recrutamento de enxofre nos cachos, excluindo o terceiro ano, foi de 2,6 a 5,5 vezes maior do que nas inflorescências masculinas. A distribuição percentual pode ser melhor visualizada pela Figura 18c.

A Figura 23, representa o acúmulo de enxofre nos diferentes componentes do dendezeiro, em função da idade, com suas respectivas equações de regressão. A equação do segundo grau ascendente se ajustou melhor para ráquis, "cabbage", flechas, estipe, pecíolos e espiguetas, enquanto a linear ascendente para folíolos, frutos, inflorescências masculinas e pedúnculos.

O comportamento de cada componente do dendezeiro em decorrência da idade com relação à quantidade acumulada de macronutrientes, obedeceu à mesma sequência apresentada pelos teores, ou seja, K > N > Ca \rightarrow Mg \rightarrow P \rightarrow S, inclusive para os foliolos N \rightarrow K \rightarrow Ca \rightarrow Mg \rightarrow P \rightarrow S.

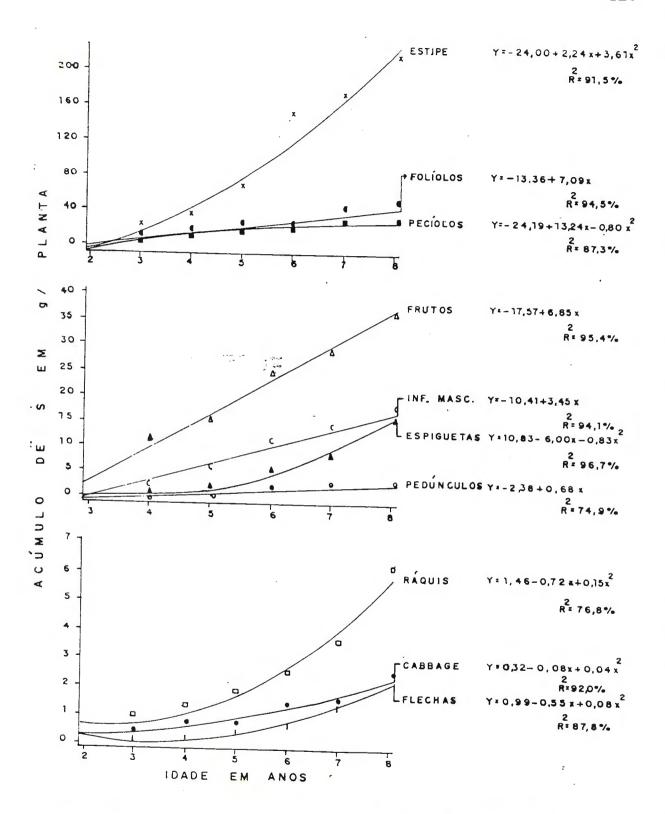


Figura 23. Equações de regressão do acúmulo de enxofre nos diferentes componentes do dendezeiro, em função da idade.

4.3.1. Cloro

4.3.1.1. Concentração

Os resultados da concentração de cloro nos diferentes componentes do dendezeiro, em percentagem da matéria seca, em função da idade, e as respectivas indicações das diferenças significativas são apresentados na Tabela 16. Constata-se que ocorreu aumento da concentração de cloro, nos componentes, com a idade das palmas, excluindo as flechas e os frutos os quais mostraram redução, conforme pode ser melhor ser observado através da Figura 24.

O incremento não obedeceu à uma sequência cronológica, porém de modo geral, as maiores concentrações foram observadas nas palmeiras mais velhas. Dentre todos os componentes, destacou-se o "cabbage" como o mais rico em cloro, seguido pelas flechas, pecíolos e folíolos = ráquis, como órgãos constituintes da copa. No caso dos cachos, observou-se maior concentração de cloro nos frutos, até o terceiro ano, para posteriormente, ser superado pelos pedúnculos. As espiguetas apresentaram valores comparáveis aos frutos, no sexto e sétimo anos, chegando à superá-las, no último ano.

Os valores mínimos e máximos da concentração de cloro, nos diferentes componentes do dendezeiro, estão

contidos na Tabela 17. Nota-se que a maior amplitude ficou por conta das flechas e a menor para as inflorescências masculinas. Dentre os micronutrientes, o cloro foi o que apresentou menor flutuação nos teores.

A importância do suprimento deste nutriente no dendezeiro foi demonstrada, pela primeira vez, por OLLAGNIER & OCHS (1971a, 1971b), em pesquisas desenvolvidas em San Alberto na Colombia. Ficou demonstrado que a adubação clorada proporcionou um aumento significativo de 3 a 4 t cachos/ano ou seja 600 a 800 kg/óleo/ha/ano, com a correção do cloro de 0,2 para 0,5%. Um levantamento do estado nutricional do cloro, nas diversas plantações do mundo, inclusive em Belém, foi realizado pelos referidos pesquisadores, revelando teores menores do que 0,5% e maiores do que 0,9%. Em Belém, em Latossolo, sem aplicação de cloreto de potássio, houve uma variação de 0,202% a 0,289% de cloro, enquanto, com a adubação clorada foi de 0,337% a ,406%.

Com a demonstração da importância do cloro para o dendezeiro, alguns trabalhos foram realizados, em diversos países, comprovando sua importância para essa palmeira (OLLAGNIER, 1973; AKBAR et al., 1975; DANIEL & OCHS, 1975; TAFFIN & QUENCEZ, 1980; NAIR & SREEDHARAN, 1983; I.R.H.O., 1992).

A função do cloro no dendezeiro ainda não está totalmente esclarecida. UEXKULL (1972), sugeriu que o cloro estaria envolvido na economia do uso da água, e que em plantas com baixo nível de cloro, os estomatos não

funcionariam adequadamente. Pesquisas mais recentes mostraram que as células guardas necessitam de cloroplastos e amido para abertura dos estomatos, e quando essas organelas não são suficientes para atender à demanda, os estomatos não se movimentam. Nesse caso, a absorção do cloro é necessária para sua abertura (SCHNABL & RASCHKE, 1980).

Foster³, citado por UEXKULL (1985b), não encontrou cloroplastos nas células guardas do dendê, evidenciando que a família Palmae necessita da presença do cloro para movimentar as células guarda dos estomatos. Há necessidade de mais pesquisas para comprovar a função específica do cloro no dendezeiro.

Os teores de cloro no dendezeiro, citados na literatura, são exclusivos para a folha 17, não havendo trabalhos que mostrem o seu comportamento em relação aos demais componentes da planta.

O nível crítico do cloro ainda não está completamente definido, enquanto para OLLAGNIER & OCHS (1971a), seria de 0,35% da matéria seca da folha 17, UEXKULL & FAIRHURST (1991), sugerem como concentração ótima 0,45 a 0,60%. Em palmeiras jovens na Sumatra, DANIEL & OCHS (1975), determinaram um nível ótimo, provisório, de 0,2%. Comparando os teores de cloro nos folíolos da planta inteira deste trabalho com o nível crítico proposto por OLLAGINER & OCHS (1971a), para a folha 17, percebe-se que somente o segundo ano foi inferior a 0,35%, e os demais componentes, em geral, mostraram teores mais elevados.

[⇒] FOSTER, H.L. Personal communication, 1983.

HI

K K K K K

MMM

Tabela 16- Concentração de micronutrientes nos diferentes componentes do dendezeiro, em função da idade.

Idade				(Componente	s da plant	a				
(Anos)	Foliolos	Peciolos	Ráquis	'Cabbage'	Flechas	Estipe	Inf. Mas.	Pedúnculos	Espiguetas	Frutos	
					CLORO (%)					
2 3 4 5 6 7 8	0,29d 0,39c 0,39a 0,48a 0,42abc 0,41bc 0,46ab	0,41c 0,45c 0,40c 0,40c 0,56b 0,61ab 0,68a	0,35c 0,33c 0,36c 0,33c 0,48a 0,45ab 0,42b	1,69b 2,46a 2,32a 2,44a 2,60a 2,51a 2,41a	1,37ab 1,55a 0,96de 1,02cde 1,25bc 0,78e 1,22bc	0,31d 0,53c 0,59c 0,89a 0,87a 0,76b 0,58c	0,37b 0,41b 0,32c 0,38b 0,33c 0,63a	0,31c 0,23c 0,59b 0,85a 0,66b 0,63b	0,33c 0,35c 0,46b 0,64a 0,49b 0,58a	1,48a 1,07b 0,70c 0,70c 0,47d 0,39d	
2	6 25ab	2 622	3,12a	65,00a	17,25ab	ш) 19,75с					
2 3 4 5 6 7 8	6,25ab 5,75ab 5,12b 5,00b 6,12b 7,00a 5,00b	2,62a 2,62a 2,37a 2,37a 2,00a 1,75a 2,00a	3,62a 3,37a 3,12a 3,75a 3,37a 3,25a	47,00b 30,25c 31,75c 30,75c 21,00d 23,25d	20,25a 13,00c 12,00c 15,50bc 15,25bc 15,50bc	42,25a 30,75b 17,75cd 15,50cd 18,25cd 13,25d	12,25c 18,25ab 16,25bc 16,25bc 16,75bc 19,75a	7,75d 7,00d 6,25d 15,75b 23,00a 12,25e	5,25c 7,50ab 9,25a 9,00a 5,25c 6,50bc	18,25a 12,00c 14,00bc 16,75ab 13,25c 8,25d	
	BORO (ppm)										
2 3 4 5 6 7 8	17,25ab 17,00ab 16,62ab 16,00b 17,12ab 18,12ab 19,12a	5,87bc 5,42bc 4,75cd 4,32d 6,37b 5,12bcd 11,50a	13,62b 12,62b 12,25b 10,50b 11,62b 18,75a 19,37a	28,75e 37,75d 44,75d 43,50c 35,00bc 39,00ab 39,00a	15,75ab 20,25a 12,00b 18,00a 17,25a 19,50a 19,75a	16,75b 15,50b 26,00a 25,25a 18,25b 18,00b 17,50b	20,75b 22,50b 23,00b 22,00b 26,50ab 32,25a	16,75b 16,00b 18,00b 16,00b 14,75b 31,25a	5,75c 11,25a 11,75a 12,00a 8,75b 13,25a	10,00c 19,25a 12,00bc 14,00ab 11,75c 14,00ab	
		FERRO (ppm)									
2 3 4 5 6 7 8	45,00d 51,37cd 69,37b 57,37c 65,50b 70,00b 84,00a	70,25d 76,37d 54,87e 122,25b 67,50de 89,75c 149,50a	18,12b 18,37d 22,12d 22,50d 33,87c 41,00b 78,75a	49,50d 66,00ab 53,75cd 62,75bc 65,00ab 63,75bc 75,50a	65,25b 77,25b 37,75c 59,00bc 84,25ab 103,25a 107,00a	406,25bc 211,00de 304,00cd 195,25e 447,00ab 332,00c 546,00a	92,25c 75,25d 86,25cd 150,25a 94,75c 124,25b	68,25d 58,00e 92,00c 123,25a 64,00de 104,75b	75,50c 79,00c 75,25c 147,25a 99,25b 150,75a	139,25de 150,75cd 176,25bc 188,25b 116,00e 247,00a	
					MANGANĒS (ppm)					
2 3 4 5 6 7 8	130,50d 189,62bc 145,25d 174,87c 202,75b 184,37c 223,62a	20,82e 28,87d 21,25e 36,75bc 41,37b 47,87a 36,00c	19,62d 20,75d 18,25d 34,25c 31,02c 39,00b 53,62a	60,00d 127,25a 100,75b 116,75a 72,00cd 43,25e 83,25c	36,50d 48,71b 23,75e 31,75d 42,50c 44,25bc 57,00a	15,25c 27,25b 34,50a 30,25ab 29,25ab 30,25ab 26,25b	82,00b 104,75ab 109,75ab 103,75ab 105,75ab 117,25a	16,50bc 13,50c 20,75a 19,75ab 13,75a 17,25b	16,25c 17,00c 28,00b 25,25b 35,25a 26,25b	54,00c 92,25a 85,25b 53,75c 42,75d 54,75c	
					ZINCO (p						
2 3 4 5 6 7 8	9,50c 10,12c 9,75c 14,00b 15,50b 23,00a 14,50b	3,75ab 3,25abc 2,37c 2,75bc 3,12abc 3,37abc 4,12a	3,62a 3,75c 3,62c 4,00bc 5,37a 4,75ab 5,25a	282,25a 134,00bc 148,75b 133,50c 118,50d 111,00d 114,75d	22,75ab 24,75a 18,25cd 16,00d 17,75cd 20,00bc 25,50a	40,00c 127,75b 183,25a 137,50ab 61,00c 55,00c 59,00c	30,75b 34,50b 44,75a 35,75b 45,50a 35,00b	4,25d 10,00bc 12,25ab 8,75c 12,00abc 14,25a	9,50c 11,25b 21,50a 11,50b 11,0 bc 10,75bc	18,00b 26,00a 23,00ab 28,00a 27,50a 27,25a	

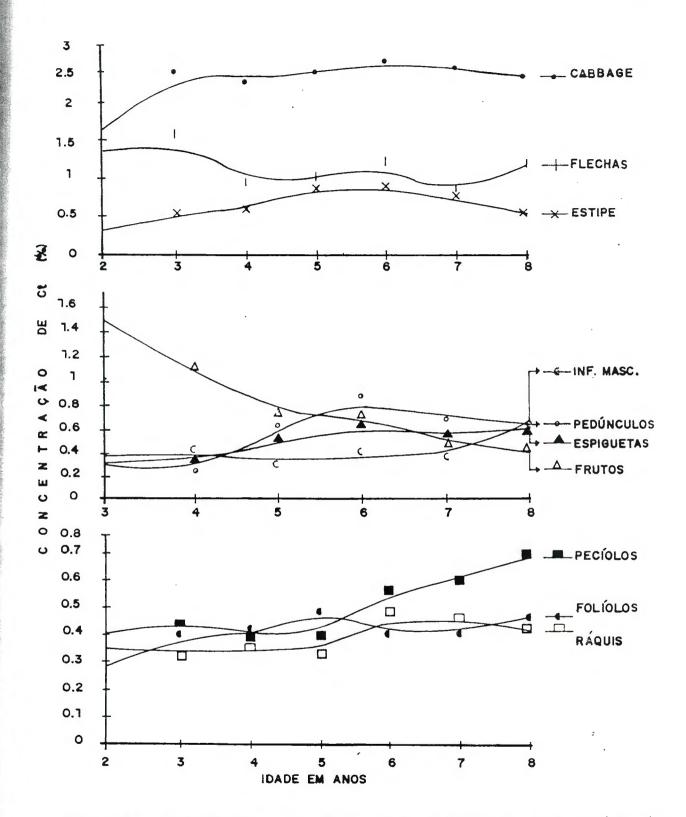


Figura 24. Concentração de cloro nos diferentes componentes do dendezeiro, em função da idade.

Tabela 17 - Amplitude de variação das concentrações de micronutrientes nos diferentes componentes do dende zeiro.

	C1	Cu	В	Fe	Mn	uZ
Componentes da plnata	(%)	(mdd)	(mdd)	(mdd)	(mdd)	(mdd)
Foliolos	0,29-0,46	5,00- 7,00	16,00-19,12	45,0 - 84,00	130,50-223,62	9,75- 23,00
Pecíolos	0,40-0,68	1,75- 2,62	4,32-11,50	54,87-149,50	20,82- 47,87	2,37- 4,12
Raquis	0,33-0,48	3,12-3,75	10,50-19,37	18,12-78,75	18,25-53,62	3,62- 5,37
Cabbage	1,69-2,60	21,0 -65,0	28,75-44,75	49,50- 75,50	43,25-127,25	111,0 -282,25
Flechas	0,78-1,55	12,0 -20,25	12,0 -20,25	37,75-107,00	31,75-57,00	16,0 - 25,50
Estipe	0,31-0,89	13, 25-42,25	15,50-26,00	195,25-546,00	15,25- 34,50	40,00-183,25
Inflorescênciæ masculinas 0,33-0,41	0,33-0,41	12,25-19,75	20,75-32,25	75,25-150,25	82,0 -103,75	30,75- 45,50
Pedúnculos	0,23-0,85	6,25-23,00	14,75-31,25	58,00-123,25	13,50- 20,75	4,25-14,25
Espiguetas	0,35-0,64	5,25- 9,25	5,75-13,25	75,25-150,75	16,25- 35,25	9,50- 21,50
Frutos	0,39-1,48	8,25-18,25	11,75-19,25	116,00-247,00	42,75- 92,25	18,00- 28,00
		•				٠

4.3.1.2. Acúmulo

Os valores calculados do acúmulo médio de cloro em função da idade do dendezeiro, constam da Tabela 18. Com base no teste de Tukey, verificou-se que em todos os componentes houve aumento do conteúdo de cloro com a idade das plantas. Em termos gerais, o acumulo foi maior no oitavo ano, destacando o estipe, com 938,19 g/planta.

A sequência decrescente do acúmulo de cloro nos diferentes componentes foi: estipe > peciolos > folíolos > ráquis > frutos > espiguetas > flechas > pedúnculos > inflorescências masculinas > "cabbage". De acordo con esta ordem, infere-se que na copa os peciolos foram os maiores acumuladores de cloro, e o "cabbage" o menor.

O estipe, somente a partir do quinto, apresentou-se como principal componente na acumulação de cloro, atingindo 50% no sexto e sétimo anos em relação aos demais órgãos (Tabela 19). Destacaram-se os peciolos como segundo armazenador de cloro, sendo superior ao estipe até o quarto ano, alcançando no oitavo ano, 502,78 g/planta.

A comparação entre as médias nos componentes da copa, estipe, cachos e inflorescências masculinas, em decorrência das idades, é apresentada na Tabela 20. Somente à partir do quinto ano, houve domínio do estipe em relação à copa, com uma diferença crescente a cada ano. A Figura 25a, mostra, de acordo com a análise de regressão, que a quantidade acumulada de cloro no estipe, copa e inflorescências masculinas pode ser estimada através de uma curva

画 画

画

孫

一篇

II II

I

1

阿阿

展

M

画 画

THE PERSON NAMED IN

1

M

19

門門

[1]

I

厦

1

I I

THE STATE OF

I

画画

I

四四四四

do segundo grau ascendente, enquanto que para os cachos por uma do primeiro grau. Nos cachos, o máximo acúmulo de cloro foi de 296,80 g/planta (13,2%) no oitavo ano, enquanto nas inflorescências masculinas de 40,73 g/planta (1,8%). A Figura 26a mostra com maior clareza, a distribuição percentual de cloro nesses componentes.

A Figura 27, contém as equações de regressão das quantidades acumuladas de cloro nos vários componentes do dendezeiro, com a idade. O modelo mais explicativo para os foliolos foi o linear, enquanto que para os demais foi o quadrático. O ponto de máximo acúmulo de cloro nos frutos ocorreu aos 6.9 anos, correspondendo a uma quantidade máxima de 113,29 g/planta.

4.3.2. Cobre

4.3.2.1. Concentração

As concentrações de cobre, de acordo com a idade do dendezeiro, acompanhada das respectivas significâncias, pelo teste de Tukey 5%, são apresentadas na Tabela 16. Depreende-se que o comportamento do cobre não seguiu um padrão definido nos componentes, à semelhança do cloro, conforme pode-se melhor observar através da Figura 28. No estipe, até o terceiro ano, os teores aumentaram para em seguida diminuirem. Nas espiguetas, até o sexto ano, houve incremento e nos demais houve redução. Nas inflorescências masculinas os aumentos na concentração de cobre ficaram mais evidentes, passando de 12,25 ppm, no terceiro ano, para 19,75

ppm, no oitavo ano. No "cabbage", flechas, pedúnculos e frutos, as concentrações reduziram com a idade das palmeiras, enquanto os pecíolos e ráquis não mostraram variação significativa. O "cabbage" foi novamente o mais rico em cobre, seguido do estipe, inflorescências masculinas, flechas, frutos, pedúnculos, espiguetas = folíolos, ráquis e pecíolos.

A concentração de cobre, em vários órgãos do dendezeiro, em função da idade, foi pesquisada na Malásia, por NG et al. (1968b). Uma análise comparativa, revela que as concentrações nas flechas e, principalmente, no estipe, do presente trabalho foram mais altas, enquanto as dos folíolos e "cabbage", no quinto e sexto anos foram semelhantes. Por outro lado, os teores de cobre no ráquis, encontrados na Malásia, foram cerca de duas vezes maiores. Ficou constatado, naquele país oriental, que no geral, houve uma tendência de redução dos teores de cobre, com a idade das plantas.

Os teores de cobre das espiguetas foram compativeis com os obtidos por NG & THAMBOO (1967), enquanto para os pedúnculos, isso ocorreu somente no sétimo ano, para nos demais serem inferiores. A maior concentração de cobre, dentre os componentes dos cachos, foi maior para os frutos, seguido pelos pedúnculos e espiguetas. Nos resultados dos pesquisadores acima referidos, o pedúnculo foi o mais rico em cobre, seguido da espigueta, amêndoa, polpa e casca. A faixa de variação nos teores de cobre, nos constituintes dos cachos, foi de 5,25 ppm (espiguetas) a 18,25 ppm (frutos), ao passo que na Malásia, foi de 5,1 ppm (casca) a 23,5 ppm (pedúnculo), estando bem próxima entre os dois países, o que indica pouca variação.

医阿尼尼阿尼

Tabela 18 - Acúmulo médio de micronutrientes nos diferentes componentes do dendezeiro,em função da idade.

Idade		Componentes da planta											
(Anos)	Foliolos	Pecíolos	Ráquis	Cabbage	Flechas	Estipe	Inf. Mas.	Pedunculos	Espiguetas	Frutos			
				CL	ORO (g/pla	nta)							
2 3 4 5 6 7 8	10,49f 34,81e 71,78d 134,12c 129,82c 186,15b 234,10a	17,91e 51,30e 113,47d 140,96d 256,62c 331,42b 502,78a	13,99d 19,83d 50,26c 62,35c 128,77b 152,12a 173,27a	1,39d 3,14c 5,80b 6,89b 9,31a 9,37a 10,31a	2,69c 4,22de 10,08cd 12,69c 20,67b 20,22b 43,91a	13,98e 48,97de 90,28d 325,13c 769,11b 927,51a 938,19a	2,09d 6,70c 6,86c 14,36b 16,37b 40,73a	0,56e 1,72e 11,65d 20,48a 29,34b 39,54a	1,67d 6,34d 24,14c 71,03b 76,77b 146,53a	5,79c 89,67b 74,27b 109,05a 107,44c 110,73a			
				COI	3RE (mg/pl	anta)							
2 3 4 5 6 7 8	21,95f 50,62ef 93,76de 139,16cd 187,12c 312,78a 252,97b	11,45c 30,07c 64,42b 81,68b 89,56b 93,83b 146,74a	12,41d 21,32cd 46,56bc 58,70b 101,03a 113,26a 133,80a	5,36e 6,01e 7,58d 8,96bc 10,98a 7,83cd 9,92ab	3,42f 5,46ef 13,47de 14,86d 25,50c 38,97b 55,84a	88,99d 384,47cd 473,04c 651,27c 1365,89b 2233,58a 2119,65a	8,46e 29,90d 34,32d 61,40c 81,22b 127,95a	1,39d 5,25d 12,18d 38,20c 102,45a 76,83b	2,59d 13,46d 48,56c 99,57b 81,20b 164,01a	7,14d 99,97c 147,97c 260,78ab 301,50a 233,14b			
	BORO (mg/planta)												
2 3 4 5 6 7 8	60,96e 150,10e 302,47d 443,10c 523,02c 808,07b 968,80a	283,68b	54,05e 74,27e 171,30d 1 197,97d 311,59c 6 632,14b 792,80a	2,36e 4,81d 11,18e 12,27c 12,51bc 14,55ab 16,67a	3,16e 5,47e 12,54de 22,19cd 28,30c 50,46b 71,30a		11,55e 36,82de 48,51d 83,12c 128,57b 209,02a	3,01d 12,00d 35,10c 38,76c 65,60b 105,96a	2,85d 20,28d 61,72c 144,03b 135,10b 334,12a	3,90e 118,68d 126,93d 218,02c 267,15b 395,12a			
				FE	RRO (mg/p	Lanta)							
2 3 4 5 6 7 8	158,20e 153,23e 1280,45d 1600,18cd 2000,35c 3121,71b 4254,77a	1526,44d 4245,78b 3004,32c	71,97e 108,00e 306,86de 424,52d 910,24c 1350,76b 3223,34a	4,07f 8,40e 13,43d 17,72c 23,22b 23,73b 32,32a	140,14c 263,62b	1845,17a 1929,56c 4667,54c 7192,84c 39446,41b 40441,36b 87989,19a	51,13e 123,28de 182,17d 568,20b 459,65c 801,96a	12,28d 43,50d 179,40c 298,64b 285,05b 656,53a	37,48a 141,86c 395,66c 1631,66b 1501,05b 3809,79a	54,62d 1253,51a 1863,15a 2927,99b 2641,30b 6978,73a			
				MAN	GANĒS (mg/	planta)							
2 3 4 5 6 7 8	460,67g · 1668,52f 2634,71e 4868,51d 6192,99c 8240,52b 11314,97a	586,26d 1275,66c 1839,23b 2564,25b	77,95f e 121,91ef 253,33e 643,28d 832,35c 1319,25b 2196,92a	4,95d 16,19c 25,13b 33,00a 25,72b 16,11c 35,58a	7,26d 13,19d 24,81d 39,27cc 68,98c 113,96b 205,96a	68,92e 249,80e 528,24c 1111,77d 2577,82c 3679,41b 4216,98a	45,60e 171,63d 231,93d 391,92c 512,92b	2,97d 10,12d 40,46c 46,66c 61,30b 108,18a	7,95e 30,52e 147,11d 280,08c 544,70b 663,13a	21,03e 767,43d 901,72b 835,38c 972,15b 1601,98a			
		7.6.20	71 20-		INCO (mg/p	lanta) 179,41e				•			
2 3 4 5 6 7 8	33,47e 88,80de 177,25d 390,42c 473,33c 1028,51a 733,63b	65,41c 96,61c 138,72b 179,54b	14,38e e 22,02e de 50,32d dd 75,07c ec 144,20b e 159,85b a 214,85a	23,30c 17,72d 37,16b 37,72b 42,36b 41,39b 49,05a	19,75c 28,72c 51,53b	1163,01e 2789,14d d 5023,51d 5384,53b	17,09e 56,52d 94,48c 135,00b 220,65a	0,76e 7,50de 23,88c 21,16cc 53,35b 89,21a	112,91c	7,06e 216,45d 243,37d 435,28c 626,50b 769,12a			

Tabela 19 miDistribuição percentual do acúmulo de micronutrientes nos diferentes componentes do dendezeiro, em função da idade.

Idade	Componentes da planta											
(Anos)	Foliolos	Peciolo	Raquis	Cabbage	Flechas	Estipe	Inf. Mas.	Pedúnculos	Espiguetas	Frutos		
-					CLOR	.0						
2 3 4 5 6 7 8	17 20 16 17 8 10	30 30 25 18 17 18 22	23 12 11,3 8 8 8	2,3 2,0 1,3 1 0,5 0,5	4,7 2,0 3,0 1 1,4 1	23 28 20 41 50 50 42	1,1 1,5 1 1 1	0,9 0,3 1 1,5	0,7 1,6 3 5 4	3,3 20 9 7 6 5		
					COBF	Œ						
2 3 4 5 6 7 8	15 10 11 11,6 8 9	8 6 8 7 4 3 4,4	9 4 5 5 4,5 3,4 4	4 1 1 0,5 0,2 0,3	2 1,6 1,2 1,2 1,7	62 74 55,8 54 61 66,3	2 3 3 3 2,4	0,3 0,6 1 2 3	0,5 1,6 4 4 2,4	1,2 12 12 12 12 7		
	BORO											
2 3 4 5 6 7 8	27,5 33 25 22 16 18 14,5	11,6 13 10,7 7 9 6	24,4 16 14 10 9,6 14	1,1 1 0,6 0,4 0,3 0,3	1,4 1 1 1 1,1 1,1	34 31 33 46 49 48 42,5	- 2 3 2,4 2,5 3 3,1	1 1 2 1,2 1,4 3,0	1 1,6 3 4,3 3	1 9,7 6 7 5,2		
					FER	RO						
2 3 4 5 6 7 8	6,6 13 13,4 10 4 5,6 3,5	13 24 16,3 26 6 9	3 3,3 3,3 2 2,5	0,2 0,2 0,1 0,1 0,1 0,1	0,2 0,6 0,4 0,5 0,3 0,5	77 54,6 50 44,5 77 73 74	1,4 1,1 1,0 0,8 0,6	0,2 0,5 1,1 0,6 0,5	1 2 2,4 3,0 3	2 13 11,3 6 5 6		
					MANGA	ANĒS						
2 3 4 5 6 7 8	65 67 52 52 47 46 48	13 13 11,6 14 14 14 11	11 5 7 6,3 · 7,3	0,7 0,6 0,5 0,4 0,2 0,1 0,1	1 0,5 0,5 0,4 0,5 0,6 1,0	9,3 10 10,5 12 19,7 20,4	2 3,4 2,5 3 3 3	0,1 0,2 0,4 0,4 0,3 0,5	0,3 0,6 1,3 2,1 3	1 15 10 6,4 5,7		
					ZIN	ICO						
2 3 4 5 6 7 8	12 65 5 6,4 7 11 6	6 2,6 2 1,6 2 2 1,5	5,3 1,6 1,5 1,2 2 2	8,7 1,3 1,1 0,6 0,6 0,4 0,4	2 0,5 0,5 0,3 0,4 0,5	66 85 81 82 78 73	1,2 1,6 1,5 2 2,4	0,1 0,2 0,4 0,3 0,6	0,3 0,6 2 2 2 2,2	0,5 6,5 4 6 6,6		

Tabela 20 - Acúmulo médio e distribuição percentual de micronutrientes na copa, estipe, cachos e inflores cências masculinas no dendezeiro, em função da idade.

Idade		Co	pa		Est	ipe		Ca	chos		Inf. Ma	sculi	nas
(Anos)	g/p		9%	kg/ha	g/p	%	kg/ha	g/p	%	kg/ha	g/p	%	kg/ha
						C	LORO	-	-				
2 3 4 5 6 7 8	46, 113, 251, 357, 539, 659,	40e ,04d ,20c ,29b	77,0 65,7 56,3 44,7 35,4 37,6 43,0	6,6 16,2 35,9 51,0 77,1 99,9 137,9	13,98e 48,97de 90,28d 325,13c 769,11b 927,51a 938,16a	23,0 28,4 20,2 40,7 50,5 50,0 41,9	1,9 7,0 12,9 46,5 109,9 6486,1 6560,5	8,02d 97,74c 110,07c 200,57b 213,60b 296,80a	4,7 22,0 13,7 13,2 11,5 13,2	1,1 13,9 15,7 28,7 30,4 42,4	2,09d 6,70c 6,86c 14,36b 16,37b 40,73a	1,2 1,5 0,9 0,9 0,9	0,3 0,9 0,9 2,0 2,3 5,8
						C	OBRE	,		to.	- 1-		a/ha
	mg/p)		g/ha	mg/p		g/ha	mg/p		g/ha	mg/p		g/ha
2 3 4 5 6 7 8	113 225 303 414 566	,60d ,48d ,79c ,37c ,21b ,69a ,28a	38,0 21,9 26,6 25,3 18,5 16,9 18,0	7,8 16,2 32,3 43,4 59,2 81,0 85,7	88,99d 384,47cd 473,04c 651,27c 1365,81b 2223,58a 2119,65a	62,0 74,3 55,8 54,4 61,0 66,2 63,8	12,7 54,9 67,6 93,1 195,3 317,9 303,1	11,13e 118,68d 208,72c 398,56b 485,15c 473,99a	2,2 14,0 17,4 17,8 14,4 14,3	1,59 16,9 29,8 56,9 69,3	8,46e 29,90d 34,32d 61,40c 81,22b 127,95a	1,6 3,5 2,9 2,7 2,4 3,9	1,2 4,3 4,9 8,8 11,6 18,3
							BORO						
2 3 4 5 6 7 8	295 628 826 1159 1779	,27f ,85f ,08e ,13d ,11c ,32b ,26a	66,0 64,3 51,7 40,8 35,7 38,9 40,5	20,9 42,3 89,8 118,1 165,7 254,4 385,5	75,62e 142,29e 399,12e 928,94d 1607,93c 2199,10b 2834,09a	34,0 31,0 32,9 45,8 49,5 48,0 42,5	10,8 20,3 57,1 132,7 229,9 314,5 405,3	9,76f 150,97e 223,76d 400,81c 467,85b 925,21a	2,2 12,4 11,0 12,3 10,3 13,9	1,39 21,5 31,9 57,3 66,9 132,3	11,55e 36,82de 48,51d 83,12c 128,57b 209,02a	2,5 3,0 2,4 2,5 2,8 3,1	1,6 5,3 6,9 11,9 18,3 29,9
							FERRO						
2 3 4 5 6 7 8	1448 3146 6361 6078	,40e 6,67e 6,41d ,07c 8,29c 0,82b	12,0 17,5	79,3 207,1 449,9 909,6 869,2 1375,8 2695,0	1845,17c 1929,56c 4667,54c 7192,84c 39446,41b 40441,36b 87989, 19a	77,0 54,6 49,8 44,5 77,4 73,6 73,9	263,8 275,9 667,4 1028,6 5640,8 5783,1 12582,4	104,29e 1438,87d 2438,21c 4858,30b 4457,40b 11445,06a	3,0 15,3 15,0 9,5 8,1 9,6	14,9 205,7 348,6 694,7 637,4 1636,6	51,13e 123,28de 182,17d 568,20b 459,65c 801,98a	1,4 1,3 1,2 1,1 0,8	17,6 26,0 81,2 65,7
						M	ANGANĒS						
2 3 4 5 6 7 8	2144 3524 6859 8960 12254	L,95g +,97f +,25e 9,75d 0,28c 4,14b	86,8 70,0 73,8 68,4 68,0		68,92e 249,80e 528,24e 1111,77d 2577,82c 3679,41b 4216,98a	9,7 10,1 10,5 12,0 19,7 20,4 17,8	35,7 75,5 158,9 368,6 526,1	31,95e 808,08d 1089,30c 1162,12c 1578,15b 2373,30a	16,0 11,7 8,9 8,8	225,7	45,60e 171,63d 231,93d 391,92c 512,92b 753,80a	1,8 3,5 2,5 3,0 2,8	24,5 33,2 56,0 73,3
							ZINCO						
2 3 4 5 6 7 8	17. 34 61 82 146	2,03e 1,66e 9,11d 9,60d 7,35b 0,84e 3, 54 e	12,6 10,2 10,1 12,0 15,8		179,41e 1163,01e 2789,14d 5023,51c 5384,53bc 6723,62b 9515,87a	66,0 85,2 81,1 82,1 77,7 72,6	166,3 398,8 718,3 769,9 961,5	12,51f 244,16e 380,17c 583,86c 849,80t 1129,92a	7,0 6,2 8,4 9,2	54,6 83,5 121,5		1,3 1,6 1,9 2,4	7 8, 5 13, 9 19, 4 31,

Não existe uma definição sobre o nível crítico do cobre no dendezeiro. Entretanto, sua importância para essa oleaginosa, foi demonstrada no Zaire, por FERRAND et al. (1951), quando a sua aplicação aumentou em 64% a produção de cachos.

Na opinião de UEXKULL & FAIRHURST (1991), uma ótima concentração de cobre na folha 17 estaria entre 5 e 8 ppm. é possivel até que essa faixa ótima seja mais ampla, pois em Manaus, na Amazônia, observou-se em palmeiras com deficiência de cobre cujo teor encontrado por PACHECO et al. (1986) foi de 3 ppm. Por outro lado, na provincia de Riau na Sumatra, WANASURIA (1991) constatou em plantas de viveiro deficiente em cobre, teores de 0,6 ppm. Essa carência foi corrigida com a aplicação de 30 g de sulfato de cobre, sendo que os teores nos folíolos da folha 3, atingiram 4,8 ppm. Examinando-se os teores obtidos nos diferentes componentes do dendezeiro percebe-se que, com exceção dos peciolos e ráquis, todos os demais encontram-se dentro dessa faixa. É lógico, que para essa comparação, devese ter uma certa cautela, pois as recomendações para o nível ótimo são para os foliolos da folha 17.

A Tabela 17, contém a faixa de concentração de cobre encontrada nos diferentes componentes do dendezeiro. De um modo geral, a variação foi maior do que a observada para o cloro, sendo mais alta no "cabbage" e menor no ráquis.

4.3.2.2. Acúmulo

05 resultados do acúmulo de decorrência da idade do dendezeiro, são apresentados na Tabela 18. O teste entre médias, revelou um aumento significativo do conteúdo de cobre, em todos os componentes da planta, em função dos anos. Em geral, esse aumento ocorreu, com maior intensidade, entre o sétimo e oitavo anos, destacando o estipe com 2233,58 mg/planta. A sequência decrescente na quantidade acumulada foi: estipe > foliolos > frutos > peciolos > ráquis > espiguetas > inflorescências masculinas > pedúnculos > flechas > "cabbage". Com base nesses resultados fica comprovado a importância do estipe como principal armazenador de cobre, podendo chegar acumular até 74%, em relação aos demais órgãos, seguidos pelos peciolos, com 15% e pelos frutos, com 12% (Tabela 19). Com base na sequência dos componentes mostrada acima, inferese que na copa, os folíolos foram responsáveis pelo maior recrutamento de cobre.

Comparando as quantidades acumuladas com as encontradas por NG et al. (1968b), nas idades correspondentes, constata-se que, nas condições da Malásia, houve maior acúmulo nos folíolos no terceiro e quinto anos, enquanto no oitavo, foram praticamente iguais. Na Malásia a acumulação de cobre no ráquis foi 2 a 6 mais elevada, nas flechas + "cabbage" de 1,3 a 2,9 vezes maiores. No estipe o conteúdo de cobre no terceiro e quinto anos foi de 2,3 a 1,6 vezes mais elevados no país asiático, porém no oitavo ano, os valores do presente trabalho se apresentaram 1,0 vez mais elevados.

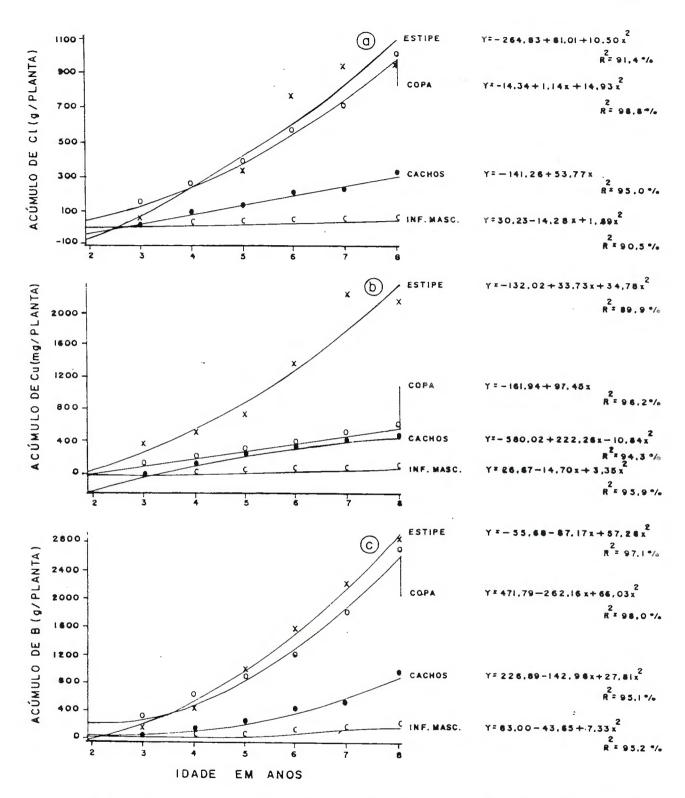


Figura 25. Acúmulo de cloro (a), cobre (b), e boro (c) na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade.

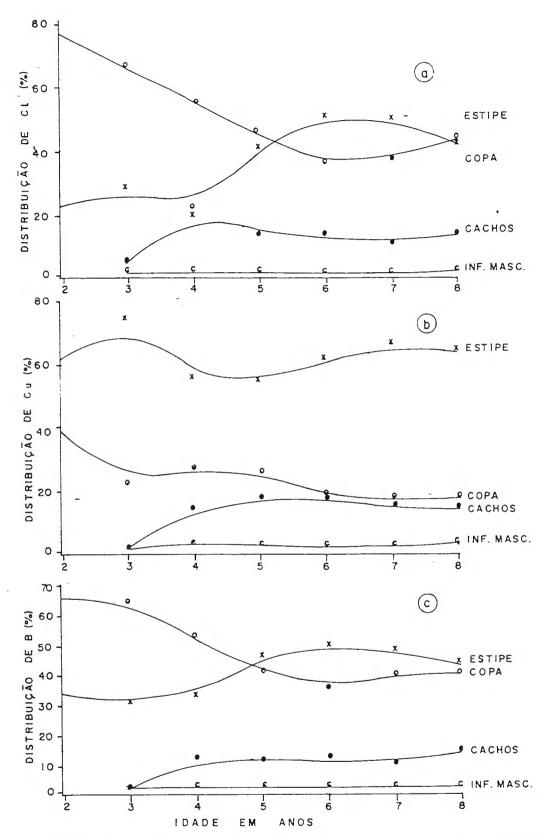


Figura 26. Distribuição percentual do acúmulo de cloro (a), cobre (b) e boro (c) na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade.

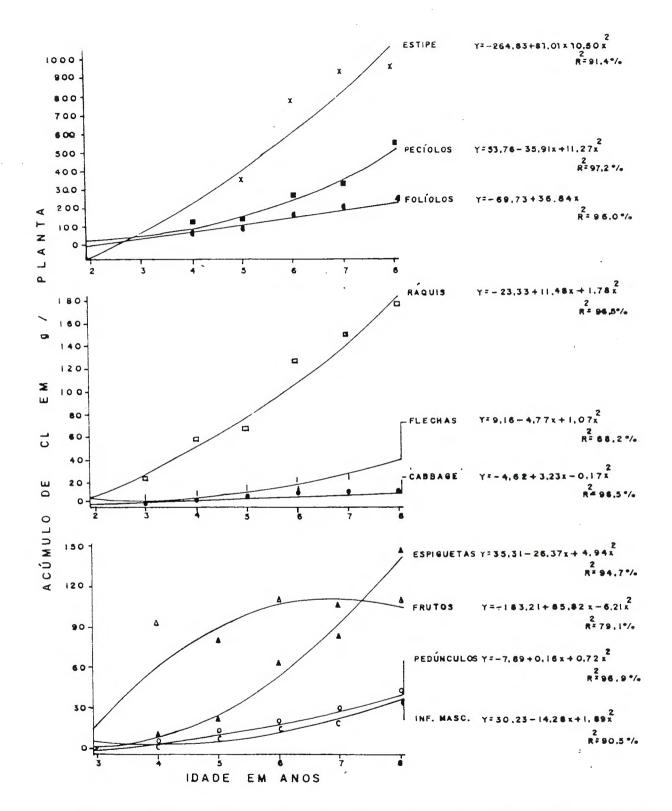


Figura 27. Equações de regressão do acúmulo de cloro nos diferentes componentes do denzedeiro, e função da idade.

O estipe, desde o segundo ano apresentou maior conteúdo de cobre do que a copa (Tabela 20). Exceto no terceiro ano, o acúmulo nos cachos foram 3 a 4 vezes inferior ao do estipe, porém em relação às inflorescências masculinas chegou a ser 6 vezes maior. A análise de regressão, mostrou que a quantidade acumulada de cobre no estipe, cachos e inflorescências masculinas, obedeceu à uma curva do segundo grau ascendente, ao passo que para a copa foi uma equação do primeiro grau também ascendente (Figura 25b).

A distribuição percentual do acúmulo de cobre nesses componentes do dendezeiro em função dos anos, é apresentada através da Figura 26b. Percebe-se um predomínio absoluto do conteúdo no estipe em relação aos demais componentes. Houve uma redução na distribuição percentual do acúmulo na copa, a partir do quinto ano, chegando a aproximar-se dos valores dos cachos. As inflorescências masculinas, apresentaram comportamento mais uniforme.

das quantidades As equações de regressão diferentes componentes do acumuladas cobre, nos dendezeiro, em relação aos anos, são apresentadas na Figura 29. Verifica-se, que o modelo quadrático foi o que melhor se ajustou para estipe, frutos, espiguetas, inflorescências masculinas, ráquis, flechas e "cabagge", enquanto o linear foi o mais adequado, para foliolos, pecíolos e pedúnculos. A equação apresentada para os frutos, permitiu calcular o ponto 7,2 anos, de máximo acúmulo de cobre, que foi aos correspondendo a uma quantidade máxima acumulada de 265,29 mg/planta.

4.4.2. Boro

4.4.2.1. Concentração

A concentração de boro, com exceção dos foliolos que não obedeceram um padrão bem definido, aumentou com a idade das palmeiras (Tabela 16). O componente mais rico em boro foi o "cabbage" e o mais pobre, os pecíolos. A Figura 30 ilustra o comportamento da concentração de todos os componentes estudados com o decorrer dos anos. Comparando-se os teores com os obtidos por NG et al., (1968b), percebe-se que os do presente trabalho foram até 1,7 vezes mais elevados nos foliolos, 2,6 no ráquis, 2,8 nas flechas, 2,9 "cabbage" e 3,1 no estipe. Essa maior concentração na Amazônia, deve-se principalmente, à adubação boratada, todos plantios, pois, dentre 05 nos apresentado como micronutrientes, este tem-se limitante, particularmente nas plantações localizadas municípios de Mojú, Tailândia e Acará. Nessa ecorregião, a mineralização da matéria orgânica, principal fonte de boro, da *Pueraria phaseoloides*, L., utilizada oriunda solo dos dendezais, é dificultada pela cobertura do ocorrência de déficits hidricos.

Os teores de boro nas espiguetas e pedúnculos, foram bastante semelhantes aos encontrados por NG & THAMBOO (1967). Dentre os componentes formadores dos cachos, os

pedúnculos foram os mais ricos neste elemento, concordando com os resultados dos pesquisadores acima referidos. Com relação à faixa de concentração de boro nos constituintes dos cachos, variou de 5 ppm (espiguetas) a 31 ppm (pedúnculos), enquanto na Malásia, foi de 1 ppm (casca) a 15 ppm (pedúnculo).

ROGNON (1984), recomenda 10 ppm como sendo o nivel crítico de boro para o dendezeiro na folha 17, entretanto este valor tem sido questionado, principalmente nas condições da Amazônia, onde há necessidade de maiores estudos. Mais recentemente, UEXKULL & FAIRHURST (1991) sugeriram a faixa de 15 a 25 ppm de boro, na folha 17, como ótima para o dendezeiro. Os teores do nutriente nos foliolos de todas as folhas da planta, contidos na Tabela 16, estão dentro dessa faixa, indicando bom estado nutricional das plantas, mesmo com o decorrer dos anos.

A faixa de concentração de boro em cada componente do dendezeiro, encontra-se na Tabela 17. As maiores variações foram nos pedúnculos e "cabbage" e as menores nos folíolos. Um levantamento realizado por PREVOT (1959), em dendezais localizados em diversas regiões do mundo, registrou teores nos folíolos da folha 17, de 3 a 13 ppm apresentando, como era de se esperar, maior variação, quando comparado aos valores encontrados nos folíolos da planta inteira deste trabalho.

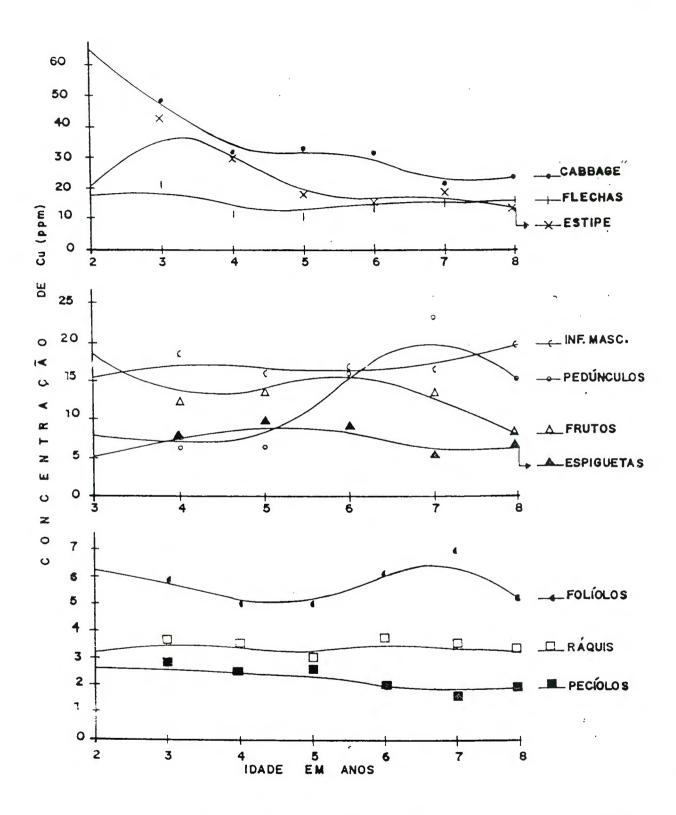


Figura 28. Concentração de cobre nos diferentes componentes do dendezeiro, em função da idade.

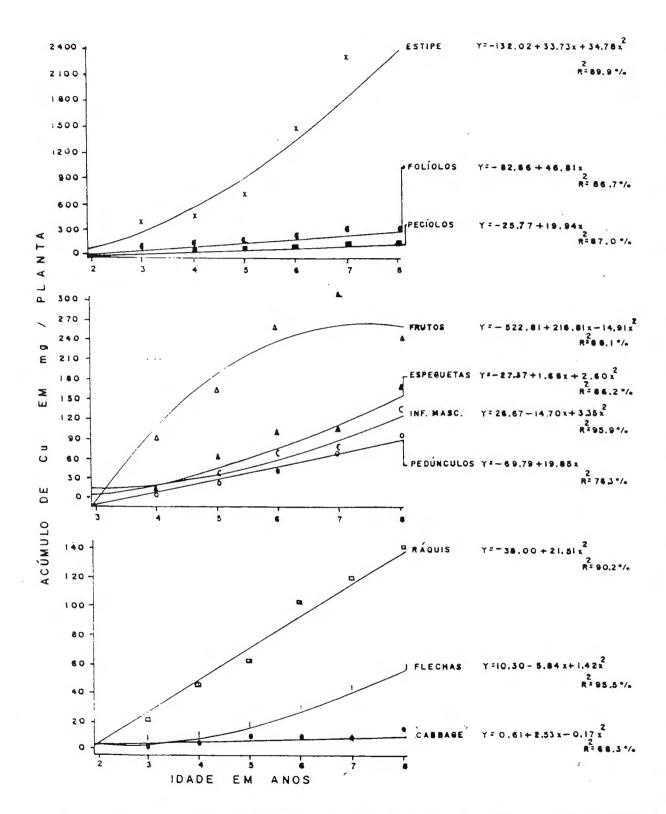
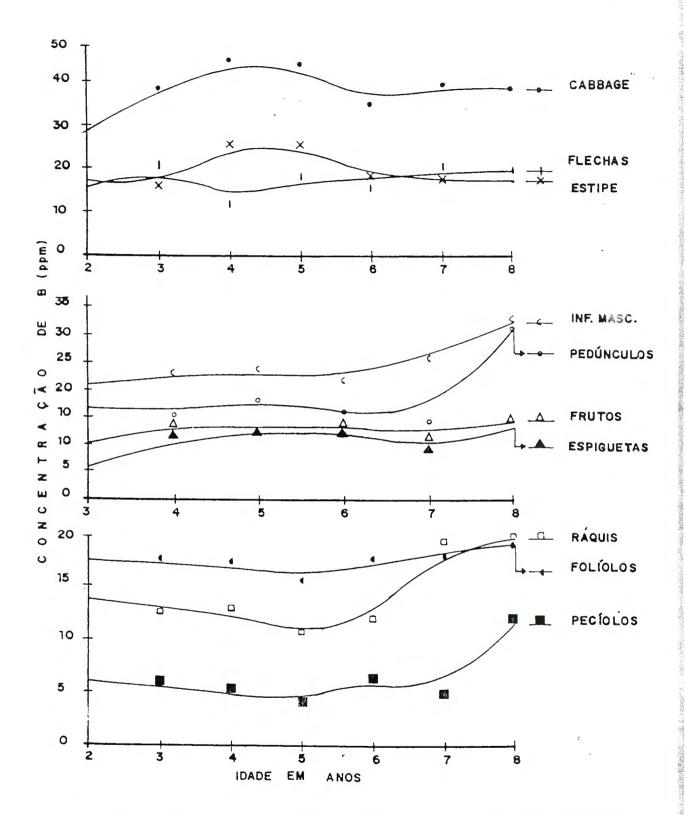



Figura 29. Equações de regressão do acúmulo de cobre nos diferentes componentes do dendezeiro, em função da idade.

Y

Figura 30. Concentração de boro nos diferentes componentes do dendezeiro, em função da idade.

4.4.2.2. Acúmulo

Foi unânime e evidente, 0 aumento na quantidade acumulada de boro, nos componentes da planta, a idade (Tabela 18). O estipe apresentou maior conteúdo, com 2834 mg/planta, no oitavo ano, que em termos percentuais, chegou a atingir 49%, no sexto ano, em relação aos demais órgãos (Tabela 19). O "cabbage" foi responsável pelo menor acúmulo, representando apenas 1% . A sequência decrescente da quantidade acumulada de boro nos diferentes componentes foi: estipe > folíolos > ráquis > peciolos > frutos > espiguetas > pedúnculos > flechas inflorescências masculinas > "cabbage". Infere-se portanto, pela ordem apresentada, que na copa, o maior conteúdo de boro ocorreu nos folíolos, seguido do ráquis, peciolos, flechas e "cabbage".

A comparação entre as quantidades acumuladas de boro, na presente pesquisa com as obtidas por NG et al. (1968b), mostraram maior acúmulo na Malásia, referente aos foliolos, ráquis e estipe, no terceiro ano, e às flechas e "cabbage"até o quinto. No oitavo ano, a quantidade acumulada de boro, foi maior no Brasil. Esse comportamento pode ser explicado principalmente, pela maior porodução de matéria seca nos primeiros anos, na Malásia, conforme dados apresentados na Tabela 9. Entretanto, nos últimos anos essa situação se inverteu, sendo a produção de biomassa superior no Brasil, aliado ao fato dos componentes terem apresentado uma maior concentração de boro.

A Tabela 20, contém os resultados da quantidade acumulada de boro na copa, estipe, cachos e inflorescências masculinas. Nota-se que, somente a partir do quinto ano, o estipe superou a copa, porém no oitavo esse dominio, em termos percentuais, foi de apenas 2%. O acúmulo de boro nos cachos foi cerca de 4 vezes maior do que nas inflorescências masculinas. A Figura 25c mostra que, as quantidades acumuladas de boro no estipe, copa, cachos e inflorescências masculinas, pode ser estimada por equações do segundo grau ascendentes.

A distribuição percentual de boro nesses órgãos pode ser melhor observada através da Figura 26c.

As equações de regressão da variação na quantidade acumulada de boro, nos diferentes componentes e idade dos dendezeiros, são apresentados na Figura 31. O modelo que melhor explicou o comportamento do acúmulo de boro nos frutos foi o linear ascendente, ao passo que, para os demais componentes foi o quadrático ascendente.

4.5.2. Ferro

4.5.2.1. Concentração

Os resultados da concentração de ferro nos componentes da planta em função dos anos, estão contidos na Tabela 16. Em todas as partes do dendezeiro foi bastante evidente o aumento da concentração de ferro com a idade

(Figura 32), com valores mais elevados no oitavo ano. Ao contrário do observado para o cloro, cobre, boro e zinco o "cabbage" não foi o mais rico em ferro, sendo essa dominância exercida pelo estipe, que chegou a atingir 546,0 ppm. Essa maior concentração de ferro no estipe em relação ao "cabbage", também foi encontrada por NG et al. (1968b). Destacaram-se, como segundo componente mais rico em ferro, os frutos com 247 ppm. É provável que o elevado teor de ferro, contido no estipe, facilite a translocação para os frutos, à fim de atender à demanda do elemento nesse componente.

Comparando-se os teores de ferro com os obtidos por NG et al. (1968b), constata-se que os do presente estudo foram 1,2 vezes mais altos nos foliolos, 2,6 no ráquis e 2,2 no estipe, somente no oitavo ano. Nas flechas, os teores de ferro, no Brasil, foram sempre superiores aos obtidos pelos pesquisadores acima mencionados, sendo até 2,0 vezes maiores. Já para o "cabbage", excluindo o terceiro ano, os teores foram mais altos na Malásia.

A concentração de ferro nas espiguetas e pedúnculos foram altas, quando confrontadas com as obtidas por NG & THAMBOO (1967). Acredita-se que a principal causa dessa supremacia, deve-se principalmente aos elevados teores de ferro nos solos da Amazônia. Dentre os componentes dos cachos, os frutos apresentaram-se mais ricos em ferro, seguido das espiguetas e pedúnculos, enquanto na Malásia, a sequência encontrada foi: espigueta > pedúnculo > casca > polpa > amêndoa.

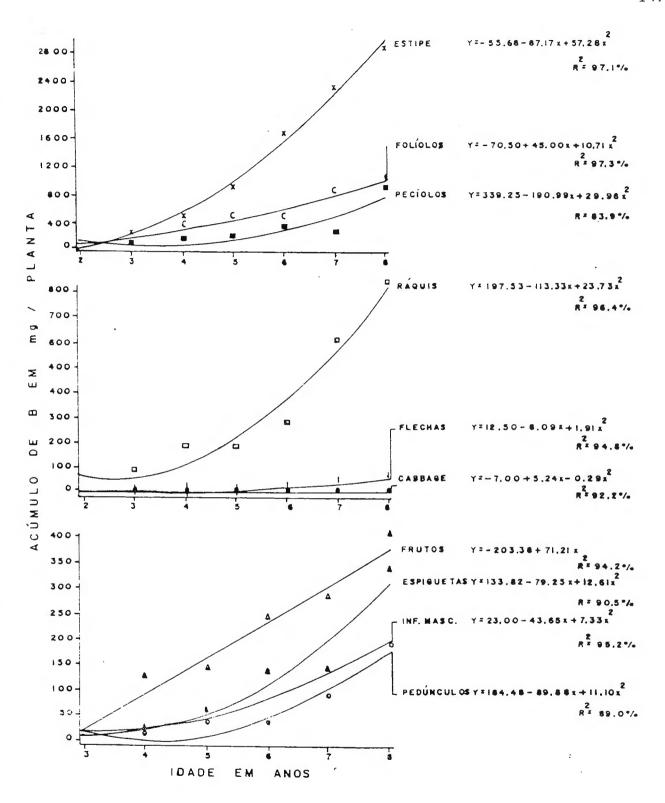


Figura 31. Equações de regressão do acúmulo de boro nos diferentes componentes do dendezeiro, em função da idade.,

人区区区

I I

No.

運 運

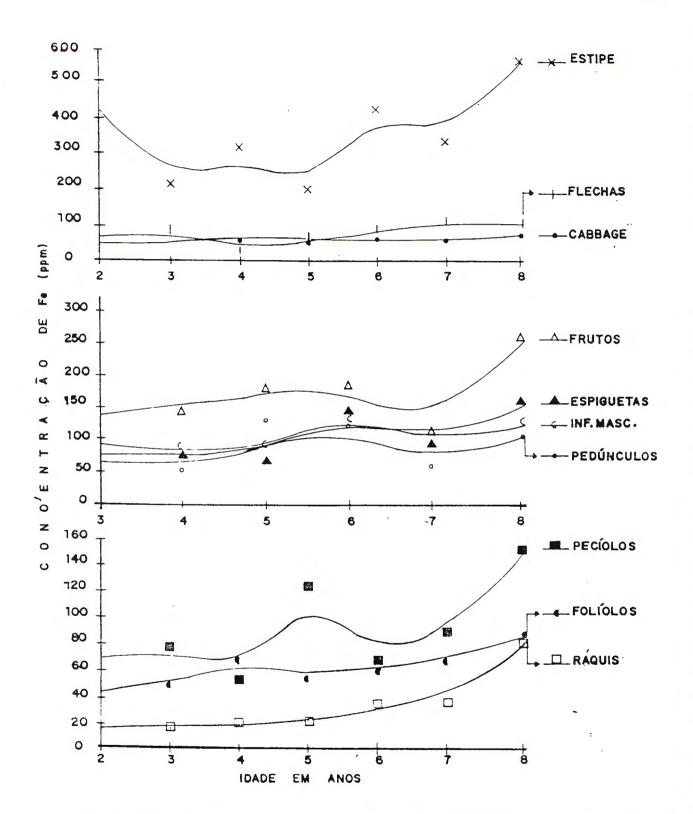


Figura 32. Concentração de ferro nos diferentes componentes do dendezeiro, em função da idade.

A faixa de concentração de ferro dos constituintes dos cachos variou de 58 ppm (pedúnculos) a 247 ppm (frutos), ao passo que a encontrada por NG & THAMBOO (1967), média das três localidades, variou de 34 ppm (amêndoa) a 74,5 ppm (espigueta).

Os teores foliares em ferro considerados como normais, de acordo com ROGNON (1984), estariam entre 50 e 250 ppm, porém o nivel crítico continua indefinido, talvez pelo fato de ainda não ter sido observado nenhuma deficiência em dendezeiros desse micronutriente em condições de campo, mesmo com 40 a 50 ppm. Pelos dados contidos na Tabela 16, percebe-se de modo geral, que com exceção do ráquis, até o sétimo ano as concentrações de ferro são baixas, quando comparada com aquela considerada normal para o dendezeiro.

Os valores mínimos e máximos da concentração de ferro nos diversos componentes, em função da idade dos dendezeiros, estão contidos na Tabela 17. O ferro foi o micronutriente que apresentou maiores variações, possivelmente devido à alguma contaminação das amostras com terra, apesar de terem sido lavadas com água destilada.

4.5.2.2. Acúmulo

As quantidades acumuladas de ferro, em todos os componentes do dendezeiro, aumentaram significativamente com a idade, ocorrendo no oitavo ano, o maior conteúdo (Tabela 18). O estipe com 87989,19 mg/planta foi o componente

H

Marrie .

1

100

H

com maior acúmulo, correspondendo em termos percentuais, à 74% em relação aos demais (Tabela 19). A ordem de acumulação foi: estipe > pecíolos > foliolos/frutos > espiguetas > ráquis > inflorescências masculinas > pedúnculos > flechas > "cabbage".

As quantidades acumuladas de ferro, encontrada por NG et al. (1968b) nos folíolos, flechas/"cabbage" e estipe, até o quinto ano, foram maiores na Malásia, porém, no oitavo ano ocorreu o inverso. No ráquis o conteúdo na Amazônia, chegou a ser, no oitavo ano, 5 vezes maior do que os da Malásia.

Os resultados de acúmulo de ferro apresentados na Tabela 20, mostram uma dominância do estipe, desde o segundo ano, em relação a copa, chegando a atingir até 77,4% no sexto ano. Esta supremacia do estipe ficou mais evidente à partir do sexto ano com valores mais divergentes da copa. Nos componentes formadores da copa o maior conteúdo de ferro registrou-se nos pecíolos, seguido dos foliolos, ráquis, flechas e "cabbage", sendo portanto a mesma sequência do cloro.

Os conteúdos nos cachos foram, no primeiro ano de produção, que corresponde ao terceiro de plantio, cerca de 18 vezes menores do que os do estipe, reduzindo para 3 vezes no quinto ano. As inflorescências masculinas acumularam cerca de 13 vezes menos ferro do que os cachos. A análise de regressão, mostrou que o conteúdo de ferro para o estipe, copa, cachos e inflorescências masculinas, pode ser estimado através de uma curva do segundo grau ascendente (Figura 33a).

A distribuição percentual do acúmulo de ferro no estipe mostrou uma queda até o quinto ano, para posteriormente aumentar, sendo que comportamento inverso ocorreu com a copa e cachos, enquanto nas inflorescências houve pouca variação (Figura 34a).

A Figura 35 apresenta as equações de regressão do acúmulo de ferro, nos diferentes componentes e idades dos dendezeiros. Com exceção do "cabbage", a equação que melhor se ajustou para os demais componentes foi a do segundo grau ascendente.

4.6.2. Manganês

4.6.2.1. Concentração

Os resultados do teste de significância concentração de manganês nos diferentes partes do dendezeiro em função dos anos, são apresentados na Tabela 16. Houve variação da concentração, com a idade das plantas, traduzindo um aumento com o envelhecimento do dendezeiro, porém não tão percepção do no caso do ferro. Melhor evidente como nos diversos comportamento da concentração de manganês componentes, pode ser obtida observando-se a Figura 36. Os o componente mais rico em foliolos revelaram-se como 223,62 ppm. Em segundo manganês, atingindo até destacou-se o "cabbage" com teores de 127,25 ppm, terceiro as inflorescências masculinas com 117,25 ppm. Nos componentes formadores dos cachos, os frutos foram os mais ricos em manganês, enquanto no Extremo Griente isso ocorreu na amêndoa, um dos constituintes dos frutos, seguido de pedúnculos e espiguetas. Estes dois últimos componentes, no cômputo geral do presente trabalho, apresentaram os mais baixos teores de manganês.

Comparados com os resultados obtidos por NG & THAMBOB (1967), os teores de manganês nos pedúnculos e espiguetas foram 65 e 50% respectivamente, mais baixos. A faixa de concentração do manganês nos componentes dos cachos variou de 13,75 ppm (pedúnculos) a 92,95 ppm (frutos), contra 4 ppm (polpa) a 158 ppm (amêndoa), obtidas pelos pesquisadores, acima mencionados, na Malásia.

Confrontando as concentrações de manganês, encontradas, com as de NG et al. (1968b), verifica-se que, altas foram muito condições asiáticas, elas componentes ou seja: de 1,3 a 3,0 vezes nos folíolos, de 1,3 a 4 no ráquis, de 3,0 a 4,6 nas flechas, de 1,8 a 5,4 no "cabbage" e de 3,0 a 4,2 no estipe. Essa supremacia na concentração de manganês pode ser explicada provavelmente pelo maior teor desse elemento no solo da Malásia. Enquanto, naquele pais oriental, o teor médio de manganês mo solo da série Selangor - utilizado por NG et al. (1968b) - segundo pesquisas realizadas por ZAKARIA & GAMMON (1979), foi de 11,6 ppm no Latossolo Amarelo e no presente trabalho determinado por SINGH (1984) foi apenas de 0,97 ppm. O extrator utilizado nos referidos trabalhos foi o mesmo, HCl 0,05N + H₂SO₄ 0,02N.

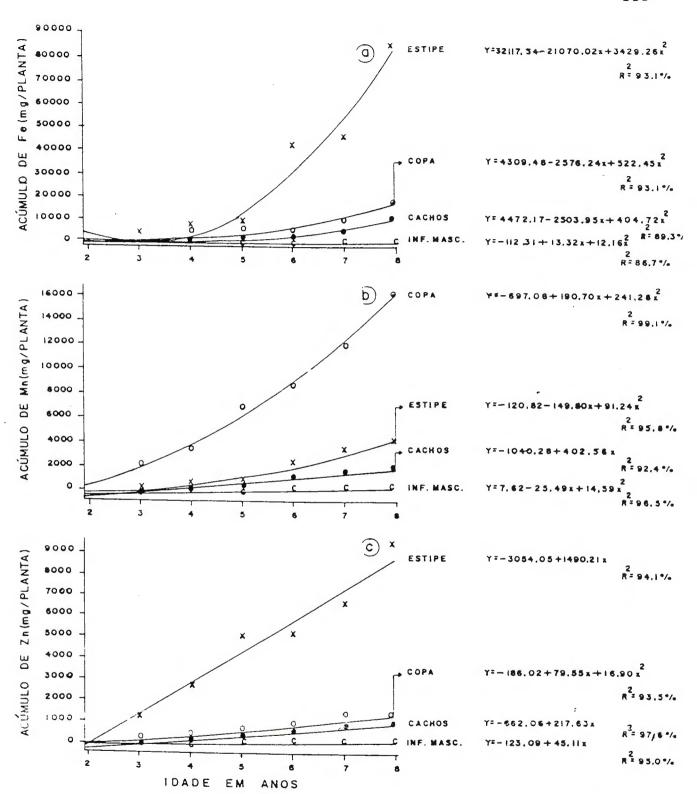


Figura 33. Acúmulo de ferro (a), manganês (b) e zinco (c) na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade.

K K K K K K K

1

THE THE THE THE

W

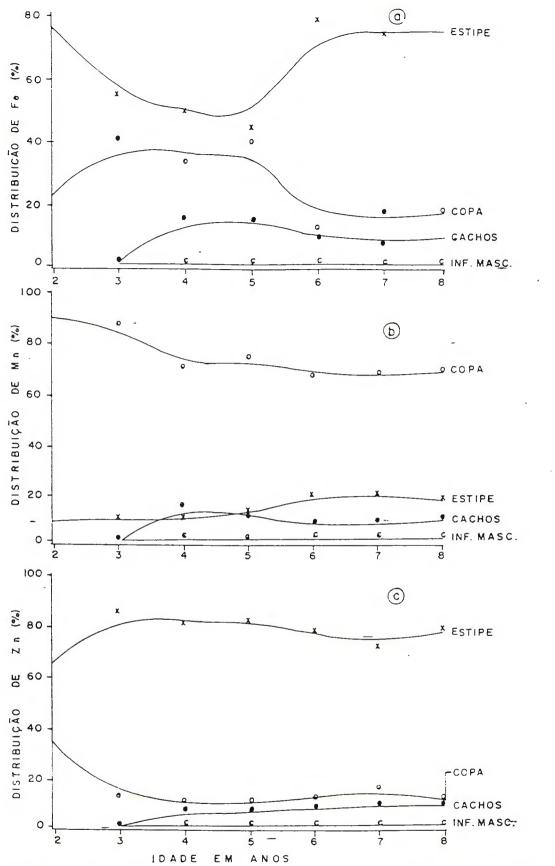


Figura 34. Distribuição percentual do acúmulo de ferro (a), manganês (b) e zinco (c) na copa, estipe, cachos e inflorescências masculinas no dendezeiro, em função da idade.

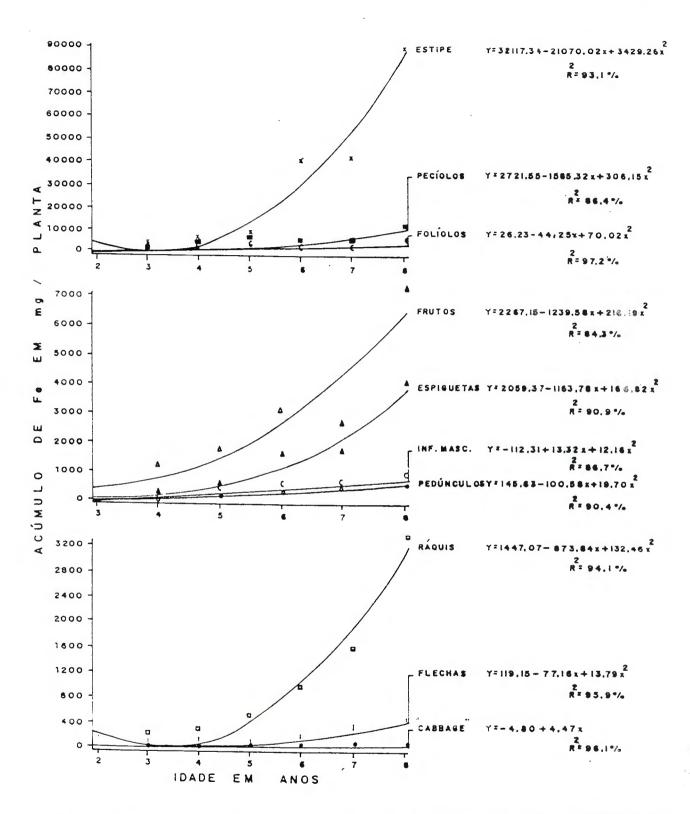


Figura 35. Equações de regressão do acúmulo de ferro nos diferentes componentes do dendezeiro, em função da idade.

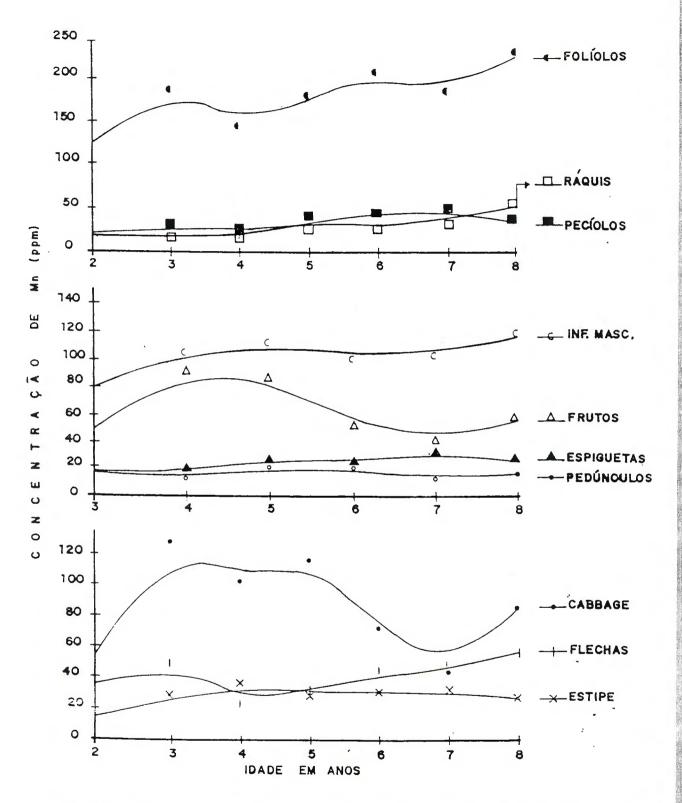


Figura 36. Concentração de manganês nos diferentes componentes do dendezeiro, em função da idade.

O nível crítico do manganês também não está definido porém, na cultura do dendezeiro, já ficou demonstrado pela pesquisa de FERRAND et al. (1951), realizada no Zaire, um aumento de 57% na produção de cachos como consequência da aplicação desse micronutriente.

De acordo com ROGNON (1984), teores foliares de manganês na faixa de 58 a 86 ppm, com rendimento de 25 t cachos/ha/ano, não porcionaram aumentos na produção e que, 50 ppm parece ser suficiente para o dendezeiro. Entretanto, para se obter uma resposta com a aplicação desse micronutriente, a concentração seria de 20 ppm. Sintomas de deficiência de manganês em mudas de dendezeiro, cultivadas em solução nutritiva, foram observados por DUFOURT & QUENCEZ (1979), cujo teor foi de 22 ppm, contra 235 ppm nas plantas normais. Os componentes que apresentaram teores acima de 50 ppm foram: foliolos, "cabbage", inflorescências masculinas e frutos, ficando os demais abaixo desse teor.

das concentrações minimas 0svalores manganês nos componentes do dendezeiro, de decorrência da idade, estão contidas na Tabela 17. A variação do que a do ferro. foi alta, porém, bem menos intensa, Dentre os micronutrientes, o manganês foi o mais sujeito a variação foliar (ROGNON, 1984). De fato, no levantamento foliares de realizado por PREVOT (1959), sobre os teores manganês no dendezeiro, nas diversas regiões do mundo, foram detectados valores de 100 a 1400 ppm, e uma forte flutuação para um mesmo local.

4.6.2.2. Acúmulo

Os resultados do acúmulo médio de manganês nos componentes, indicam com bastante clareza, um aumento com a idade das plantas, tendo ocorrido maior absorção no oitavo ano (Tabela 18). A maior quantidade acumulada foi encontrada nos folíolos alcançando, no oitavo ano, 11314,97 mg/planta, correspondendo a 48%. Em segundo lugar destacou-se o estipe com 4216,98 mg/planta, que em termos percentuais significou 18% (Tabela 19). A ordem no acúmulo foi: folíolos > estipe > peciolos > ráquis > frutos > inflorescências masculinas > espiguetas > flechas > pedúnculos > "cabbage".

Um paralelo entre os conteúdos de manganês encontrados na Malásia, por NG et al. (1968b), e os do presente trabalho, mostrou uma primazia para todos os componentes naquele país oriental, devido, possivelmente, à maior produção de matéria seca, aliada ao teor mais alto desse elemento.

Ao contrário do observado para o ferro, a quantidade acumulada de manganês na copa dominou a do estipe, em todos os anos, o que pode ser observado pelos dados contidos na Tabela 20, e o maior recrutamento de manganês da copa ocorreu nos foliolos, seguido pelos peciolos, ráquis, flechas e "cabbage".

O conteúdo de manganês nos cachos foram inferiores aos da copa e estipe, porém a partir do quarto ano, ficaram superiores aos das inflorescências masculinas em

até 4,7 vezes. A análise de regressão nestes órgãos, mostrou que a quantidade acumulada de manganês nos cachos pode ser calculada por uma equação do primeiro grau ascendente, enquanto para os demais por uma do segundo ascendente (Tabela 33b).

A distribuição percentual da quantidade acumulada de manganês, mostrou uma nitida superioridade da copa, em relação aos demais órgãos (Figura 34b). Percebe-se também, uma leve redução com o decorrer dos anos.

As equações de regressão da acumulação de manganês, com a idade das plantas, são mostradas na Figura 37. Com exceção dos frutos, que apresentaram equação linear ascendente, todos os demais componentes se ajustaram melhor à do segundo grau ascendente.

4.7.2. Zinco

4.7.2.1. Concentração

Ao contrário do ferro e manganês, as concentrações de zinco não mostraram um comportamento muito claro com a idade (Tabela 16). Nos folíolos, inflorescências masculinas, pedúnculos, espiguetas e frutos ocorreu um aumento com a idade, porém sem uma sequência cronológica bem definida, enquanto no "cabbage" e flechas houve redução nos teores (Figura 38). Nos pecíolos, ráquis e estipe, houve aumento seguido de redução ou vice-versa.

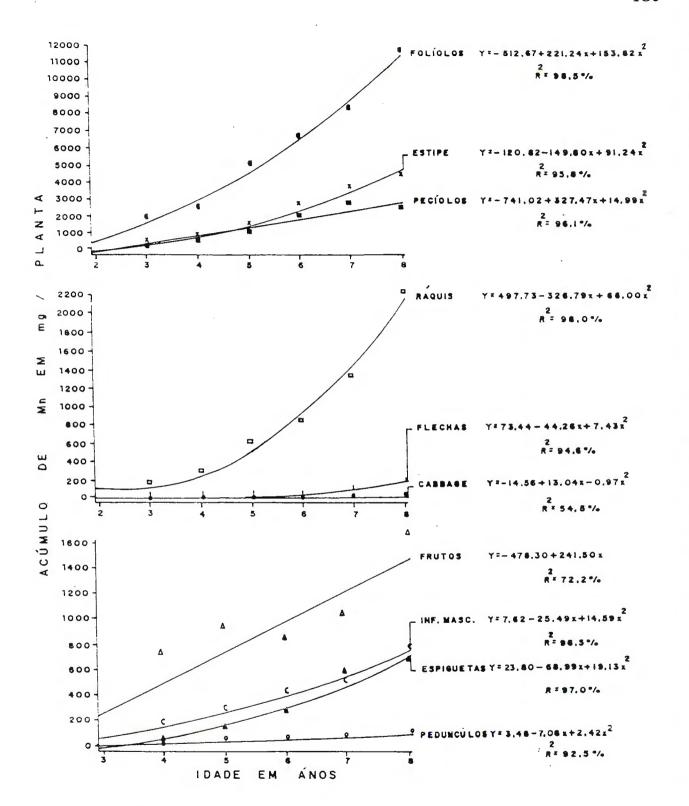


Figura 37. Equações de regressão do acúmulo de manganês nos diferentes componentes do dendezeiro, em função da idade.

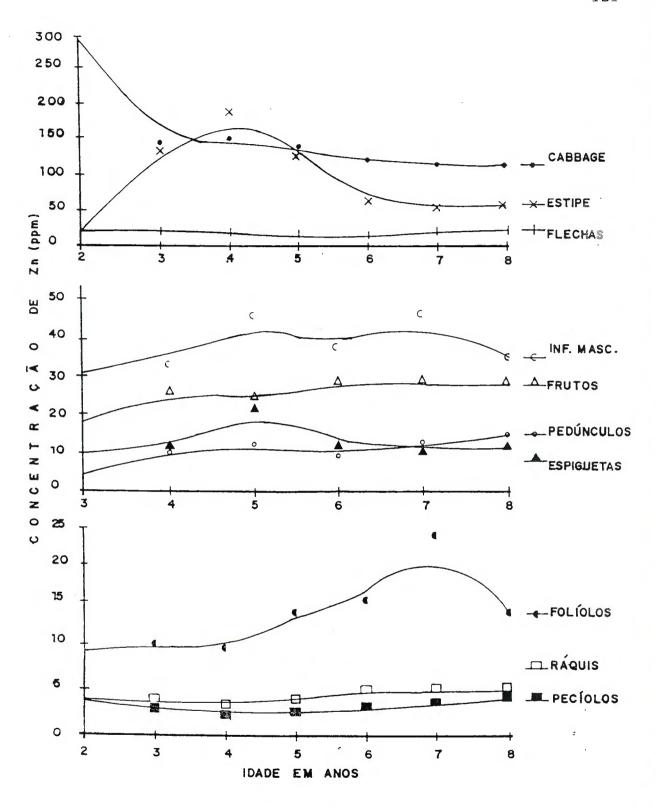


Figura 38. Concentração de zinco nos diferentes componentes do dendezeiro, em função da idade.

M

阿阿阿

阿河河河

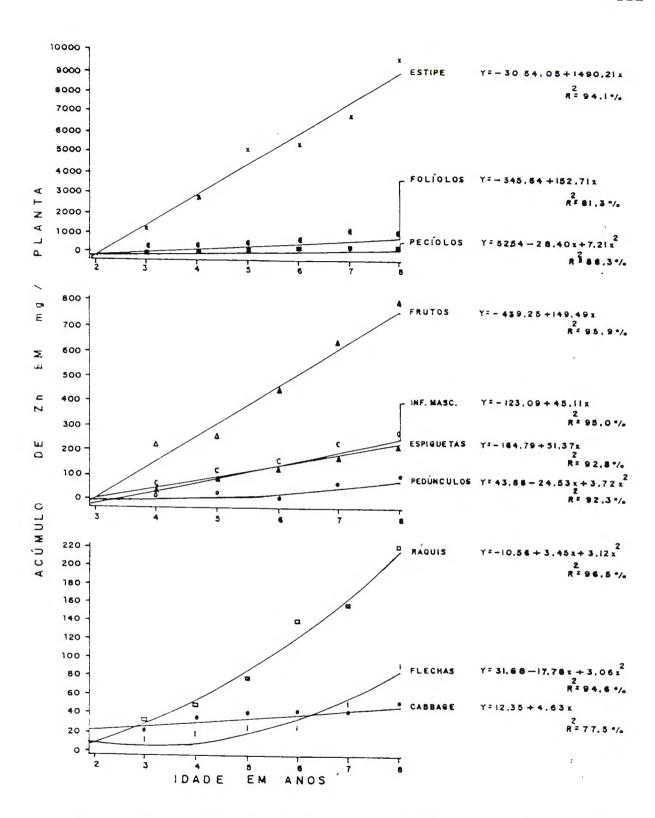


Figura 39. Equações de regressão do acúmulo de zinco nos diferentes componentes do dendezeiro, em função da idade.

Os teores de zinco encontrados nos foliolos, ráquis e flechas foram semelhantes aos obtidos por NG et al. (1968). No "cabbage" foram mais altos, no Brasil, somente no terceiro ano, enquanto no estipe isto ocorreu todos os anos, chegando a ser até 3,3 vezes mais elevados.

Os teores de zinco nas espiguetas e pedúnculos quando confrontados com os obtidos por NG & THAMBOO (1967), foram cerca de 24 a 68% mais baixos, respectivamente. Dentre os constituíntes dos cachos, os frutos foram os que se apresentaram mais ricos em zinco, enquanto na Malásia, foram as espiguetas.

A faixa de concentração de zinco nos componentes dos cachos variou de 4,25 ppm (pedúnculos) a 28 ppm (frutos), enquanto a encontrada na Malásia foi de 1,9 ppm (casca) a 46 ppm (espigueta).

I me me

Ainda não existe um consenso sobre o nível crítico do zinco na folha 17 do dendezeiro. Os teores entre 12 e 18 ppm de zinco parecem ser suficientes para essa palmeira (ROGNON, 1984; UEXKULL & FAIRHURST, 1991). Excluindo os pecíolos e ráquis que apresentaram teores muito baixos, os demais componentes, de maneira geral, encontram-se dentro da faixa considerada ótima para o zinco.

Na pesquisa pioneira sobre a aplicação de micronutrientes em dendezeiro, realizada no Zaire por FERRAND et al. (1951), o zinco foi responsável por 58% do aumento da produção.

Na Amazônia, os primeiros sintomas de deficiência de zinco em dendezeiro foram observados nas condições de Manaus (OCHS & CORRADO, 1985). As principais causas dessa desordem nutricional, tem sido a aplicação de doses elevadas de adubos fosfatados e a pobreza dos solos em zinco, pois de acordo com SINGH & MOLLER (1984), nos Latossolos Amarelos os teores de zinco disponível, em função de cinco extratores utilizados variaram de 0,05 a 0,24 ppm.

A variação nas concentrações de zinco nos componentes das plantas, são apresentadas na Tabela 17. A maior flutuação ocorreu no "cabbage" e a menor nos pecíolos. As variações nas concentrações de zinco, foram menores do que as do ferro, manganês e boro, porém maiores do que as de cobre e cloro. De certo modo, já eram esperadas variações nas concentrações dos micronutrientes no dendezeiro, devido componentes, alguns principalmente, aos seus diferentes outros mais velhos, constituídos por tecidos mais jovens, como consequência da sua própria formação e da idade da planta.

A concentração de micronutrientes nos componentes do dendezeiro, não apresentou sequência decrescente definida como ocorreu para os macronutrientes. Entretanto, os três micronutrientes com teores mais elevados em todos os componentes foram: Cl > Fe > Mn, com exceção do "cabbage", onde o elemento zinco foi superado apenas pelo cloro.

4.7.2.2. Acúmulo

Os resultados da quantidade acumulada zinco, contidos na Tabela 18, mostram um incremento com a idade dos dendezeiros, com maior conteúdo no citavo ano. O estipe foi o componente com maior capacidade de armazenar o zinco, alcançando, no último ano 9515,87 mg/planta. foliolos com 1028 mg/planta, segundo lugar ficaram os 11% 77 percentuais, em termos correspondendo respectivamente, em relação aos demais (Tabela 19). A sequência do conteúdo de zinco nos diferentes componentes foi: estipe > foliolos > frutos > peciolos > inflorescências masculinas > espiguetas > ráquis > pedúnculos > "cabbage" > Infere-se, que o maior conteúdo de zinco na copa flechas. ocorreu nos folíolos, seguido pelos pecíolos, ráquis, flechas e "cabbage", portanto a mesma ordem apresentada para cobre e manqanês.

As quantidades acumuladas de zinco em função da idade do dendezeiro, encontradas por NG et al. (1968b), com exceção dos foliolos e do estipe, no oitavo ano, foram superiores às do presente trabalho.

O conteúdo de zinco no estipe, em todos os anos, foi nitidamente superior ao da copa, atingindo 85,2% em relação aos demais componentes, conforme dados contidos na Tabela 20. Excluindo o terceiro ano, o acúmulo de zinco, nos cachos, foi até 6 vezes menor do que o da copa porém, em contraste com as inflorescências masculinas, foi 4 vezes maior.

A análise de regressão, para a quantidade acumulada de zinco no estipe, cachos e inflorescência masculina, ajustaram-se à uma equação do primeiro grau enquanto, para a copa foi uma do segundo, todas ascendentes (Figura 33c).

A Figura 34c expôre a distribuição percentual do acúmulo de zinco na copa, estipe, cachos e inflorescências masculinas, percebendo-se a evidente sequência: estipe > copa > cachos > inflorescências masculinas.

dendezeiro em função da idade, com suas respectivas equações de regressão, são apresentadas na Figura 39. O modelo que melhor explicou o comportamento do estipe, foliolos, frutos, inflorescências masculinas, espiguetas e "cabbage" foi o linear ascendente, enquanto para os demais componentes, o quadrático ascendente.

As quantidades acumuladas de micronutrientes nos componentes do dendezeiro, à semelhança dos teores, também não apresentou uma sequência decrescente definida. No geral, foi a mesma manifestada pelos teores, inclusive com relação ao zinco, sendo o segundo elemento mais acumulado no "cabbage".

4.4. Extração total de nutrientes

4.4.1. Macronutrientes

A Tabela 21, apresenta a extração total de macronutrientes pelo dendezeiro em funcão das idades. Todos os macronutrientes aumentaram sua quantidade acumulada com o decorrer dos anos.

O nitrogênio, segundo elemento mais extraído, apresentou maior acúmulo no oitavo ano, com 4098,50 g/planta, que corresponde a 34,6% do total dos macronutrientes, que com base na densidade de 143 plantas, equivale à 586,08 kg/ha. Esta alta quantidade extraida, classifica o nitrogênio como segundo nutriente mais importante para o dendezeiro. Para se ter uma idéia, em termos de fertilizante nitrogenado, como uréia, por exemplo, com 45% de N, esta quantidade de nitrogênio corresponderia a 1300 kg/ha. É lógico que esta demanda de uréia é atenuada pelo fornecimento de nitrogênio oriundo da Pueraria phaseoloides, L., e pela reciclagem de nutrientes provenientes da deposição das folhas nas entrelinhas de plantio dos dendezeiros. Entretanto, deve-se ressaltar que a devolução de nitrogênio e demais nutrientes ao solo, proporcionada pela reciclagem, processa-se à longo prazo e não é totalmente aproveitada, pois somente uma fica à disposição do dendezeiro. Estas perdas se principalmente, à lixiviação, ao consumo pelos microrganismos e pela absorção da própria leguminosa, Pueraria phaseoloides, L.

Tabela 21 - Acúmulo total e distribuição percentual de macronutrientes no dendezeiro, em função da idade.

(ANOS) g/p		NI I INOCEINIO	0	FŐ	FÓSFORO		PO	POTÁSSIO		Ü	CALC10		MAC	MAGNES 10		EN	ENXOFRE	
2 1.30	C .	%	% kg/ha ¹	g/p	%	kg/ha	g/b	252	% kg/ha	g/p	%	kg/ha	d/8	3%	% kg/ha	d/a	60	kg/ha
	1.30,26f 30,3	30,3	18,62	9,30e 2,2	2,2	1,33	193,32g 45,0 27,64	45,0	27,64	64,68f 15,0	15,0	9,24	9,24 25,95d 6,0 3,71	0,9	3,71	5,75f 1,4 0,82	1,4	0,82
3 427;	427,04f 30,4	30,4	90,19	27,55e 2,0	2,0	3,94	655,96f 46,8	8,94	93,80	186,22f 1.3,2	13,2	26,62	73,88d	5,3	10,56	32,03f 2,3	2,3	4,58
4 1.064	1.064,89e	30,4	152,27	92,58d 2,7 13,23	2,7	13,23	1425,32e 40,7 203,82	40,7	203,82	554,02e 15,8	15,8	79,22	79,22 285,19c	8,2	40,78	77,50e 2,2 11,08	2,2	11,08
5 1569	,15d	30,3	224,38	1569,15d 30,3 224,38 114,93d 2,3 16,43	2,3	16,43	2180,49d 42,0 311,81	42,0	311,81	831,984	16,0	118,97	831,98d 16,0 118,97 348,25bc	8,9	18,64	49,87 128,70d 2,5 18,40	2,5	18,40
6 24.1.2	2412,53c	31,4		344,99 191,990		2,4 27,45	3221,52c 42,0 460,67	42,0	460,67	1200,10c 15,6 171,61 405,09b	15,6	171,61	405,090	5,3	57,92	57,92 252,77c 3,3 36,14	3,3	36,14
7 3322	3322,21b	29,7	29,7 4,75,07	297,690	2,7	42,56	4976,12a	44,5	711,58	4976,12a 44,5 711,58 1598,81b 14,3 228,62 670,18a	14,3	228,62	670,18a	0,0	95,83	95,83 306,670	2,8	2,8 43,85
8 4098	4098,50a	34,6		586,08 410,57a	3,5	3,5 58,71	4244,480	35,8	96,909	4244,48b 35,8 606,96 2003,68a 16,9 286,52 720,71a	16,9	286,52	720,71a	6,1	103,06	6,1 103,06 369,22a 3,1 52,79	3,1	52,79

A Figura 40a, expõe os resultados médios da comparação da quantidade imobilizada (estipe, "cabbage" e flechas), reciclada (folíolos, ráquis, peciolos e inflorescências masculinas) e exportada (frutos, pedúnculos e espiguetas) de nitrogênio. Verifica-se, que houve aumento em todas as fases, com a idade das palmeiras. Nota-se também, que até o quinto ano, a reciclagem de nitrogênio superou a quantidade imobilizada, porém a partir do sexto ano, ocorreu uma equivalência. A quantidade imobilizada no oitavo ano superou a exportada em 3,7 vezes, entretanto no terceiro ano essa supremacia chegou a ser 20 vezes maior. A quantidade reciclada de nitrogênio, foi de 3,8 a 35 vezes maior do que a removida.

A maior extração de fósforo, à semelhança do nitrogênio foi mais acentuada no oitavo ano atingindo 410,57 g/planta, correspondendo somente à 3,5% dos macronutrientes e à 58,71 kg/ha. Juntamente com o enxofre, ele foi o macronutriente menos extraído pelo dendezeiro. Este fato não diminui a importância do fósforo para a cultura, pelas razões já discutidas.

A quantidade acumulada imobilizada e reciclada de fósforo foram análogas com o decorrer da idade (Figura 40b). A quantidade imobilizada foi de 1,7 a 10 vezes mais elevada do que a exportada, enquanto a reciclada de 1,9 a 18 vezes.

Dentre todos os macronutrientes, o potássio foi o mais extraído pelo dendezeiro, confirmando os resultados obtidos por NG et al. (1968a). A maior extração total de potássio ocorreu no sétimo ano com 4976,12 g/planta, 44,5% em relação aos demais macronutrientes, correspondendo à 711,58 kg/ha, porém, no oitavo ano, ocorreu redução na absorção desse elemento. Esta alta extração de potássio, vem ratificar a importância deste nutriente na cultura do dendezeiro, merecendo atenção especial, num programa de adubação de dendezeiros, principalmente nos solos da Amazônia e particularmente na ecorregião de Tailândia-Pará, que é carente neste elemento.

A Figura 40c, mostra que as quantidades acumulada, imobilizada e reciclada de potássio até o quarto ano se equivaleram, porém à partir do quinto ano, houve um predominio absoluto da imobilizada. Isto provavelmente devese à alta capacidade de armazenamento deste nutriente pelo estipe, podendo liberá-lo aos outros componentes da planta conforme a necessidade, como, por exemplo, às folhas e frutos, passando neste caso para a fase reciclada e exportada, respectivamente. A quantidade imobilizada e reciclada de potássio, no oitavo ano, foi respectivamente de 2,5 a 1,5 vezes, mais elevada do que a exportada.

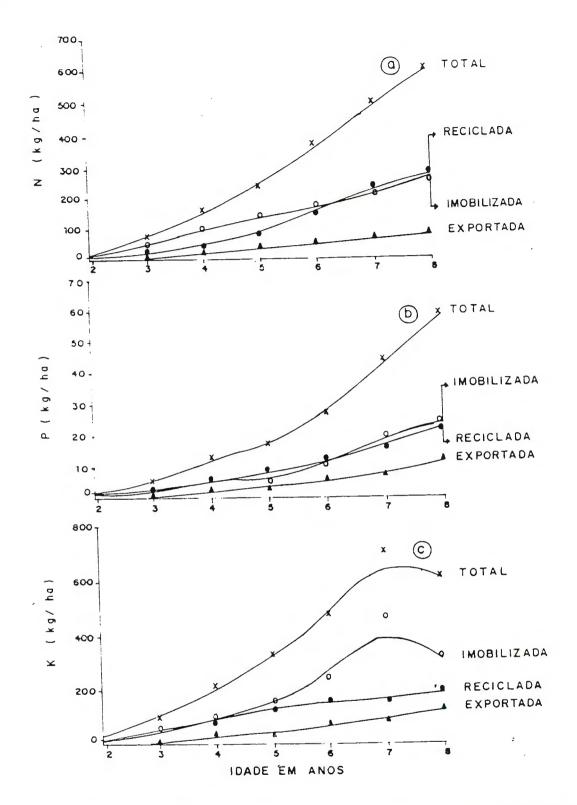


Figura 40. Quantidade imobilizada, reciclada e exportada de nitrogênio (a), fósforo (b) e potássio (c) no dendezeiro, em função da idade.

BEENERE BEENER BEENER

1

1

国国

国河

M

阿阿

1

O cálcio foi o terceiro macronutriente mais extraido pelo dendezeiro, atingindo no oitavo ano 2003,68 g/planta, ou seja, 16,9% que extrapolando para um hectare, representa 286,52 kg desse elemento. O cálcio não tem merecido a devida atenção na cultura do dendezeiro, tendo sido muito pouco estudado. Entretanto, os resultados obtidos mostram a importância desse nutriente e ressaltam a necessidade de pesquisas específicas, princi-palmente em solos ácidos, como os do presente trabalho.

A quantidade acumulada reciclada de cálcio foi superior à imobilizada, principalmente no sétimo e oitavo anos (Figura 41a). A quantidade reciclada foi 3,5 vezes superior à exportada, enquanto a imobilizada foi de 2,3 vezes mais elevada do que a removida.

O magnésio foi o quarto nutriente mais extraído pelo dendezeiro com 720,71 g/planta no oitavo ano, que corresponde à 103,6 kg de Mg/ha porém, não diferiu signifi-cativamente, do acumulado no sétimo ano.

quantidades reciclada e imobilizada de semelhantes (Figura 416). As muito foram foram ano imobilizada.no oitavo quantidades reciclada е aue do 2,2 vezes maiores respectivamente, 2,5 е exportada.

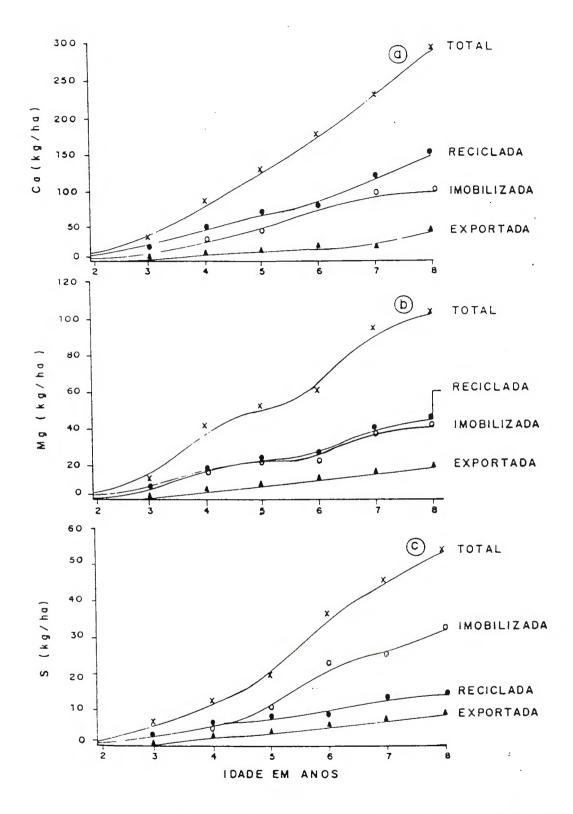


Figura 41. Quantidade imobilizada, reciclada e exportada de cálcio (a), magnésio (b) e enxofre (c) no dendezeiro, em funcão da idade.

Tabela 22 - Acúmulo total de nutrientes no dendezelro em função da idade, no Brasil e Nalásia.

	Oddin	NATROPOGRATO	FÓSF	FÓSFORO	OISSYLOA	\$810	015/1 X	10	MAGNÊS10	210	ENXOFRE	PRE
IDADE (ANOS)	BRASIL 1	MALASIA ²	BRASIL	MALÁSIA	BRASIL	MALÁSIA	BRASIL	MAI,ÁSTA	BRASIL	MALÁSIA	BRASTL	MALÁSIA
						g/planta				-		
			5	7.7 55	193,32	1466,54	64,68	254,91	25,95	197,89	5,75	161,32
2	130,26	823,76	02,4	196 91	96.559	2572,67	186,22	342,87	73,88	329,77	32,03	287,43
3	427,04	1149,62	56,12	16,021	1425.32	3626,98	554,02	500,00	285,19	393,77	77,50	468,39
4	1064,84	1592,26	92,28	213.05	21.80,49	7,000	831,98	467,32	348,25	356,61	128,70	557,60
r,	1569,15	1714,20	191.99	221,16	3221,52	5820,72	1200,10	598,55	402,09	540,17	252,77	755,31
9 1	2412,55	26,4201	297,69	280,89	4976,12	5504,68	1598,81	561,94	670,18	543,66	306,67	654,22
~ 8	4098,50	2898,26	410,57	223,41	4244,48	6572,96	2003,68	611,89	720,71	610,54	369,22	765,73
	× ×	BORO	00	COBRE	HIL	FERRO	MANG	MANGANĒS	211	ZINCO		
	BRASIL	MALÁSIA	BRASIL	MALÁSIA	BRASIL	MALÁSIA	BRAS11.	NALÁSTA	BRASII.	MA1.ÁSIA		
						mg/planta -						
т v	459,46	1128,0	517,56	1392,0 1743,0 2972,0	3533,66 16174,30 119082,74	3533,66 30025,0 6174,30 34854,0 9082,74 61193,0	2472,34 9292,76 23734,21	19229,0 34937,0 76065,0	1364,28 6117,78 12265,63	3108,0 6451,0 9492,0		
æ	0004,23											

1 - Presente trabalho

2 - NG et alii (1968a)

A extração total de enxofre pelo dendezeiro foi semelhante à do fósforo. O fósforo foi mais extraído aos dois, quatro e oito anos, enquanto o enxofre nos demais. A maior extração de enxofre se manifestou também aos oito anos com 369,22 g/planta, apenas 3,1% em relação aos demais macronutrientes, perfazendo um total de 52,79 kg/S/ha.

A quantidade imobilizada e reciclada de enxofre até o quarto ano, foram análogas, entretanto, a partir do quinto ano, a imobilizada foi maior (Figura 41c). A remocão pelos cachos aos oito anos foi 1,68 vezes menor do que a reciclada e 3,8 vezes inferior à quantidade imobilizada.

A comparação entre os resultados da extração total de macronutrientes, com base na producão de matéria seca e na concentração dos nutrientes, do presente trabalho, com os obtidos na Malásia, nas idades correspondentes, são apresentados na Tabela 22. Verifica-se que, no trabalho de NG et al. (1968a), mesmo sem a inclusão da extração dos nutrientes dos cachos e inflorescências masculinas, que a quantidade total acumulada de potássio e enxofre foi bem mais elevada, em todos os anos. As maiores extrações, nas condições onde se desenvolveu a presente pesquisa, foram proporcionados pelo nitrogênio, a partir dos seis anos, fósforo e magnésio aos sete e oito, e cálcio, à partir do quarto ano. Acredita-se, que essa maior extração total de potássio e enxofre e dos demais macronutrientes, nos

primeiros anos, de idade da planta na Malásia, mesmo na variedade Dura, se deva principalmente às melhores condições de precipitação pluviométrica, fertilidade do solo, fertilização e manejo cultural.

Em contrapartida, os resultados obtidos para uma extração total de macronutrientes foram bem superiores aos obtidos na Nigéria por TINKER & SMILDE (1963), mesmo excluindo-se os cachos e inflorescências masculinas.

A Figura 42, mostra com clareza a quantidade total acumulada dos macronutrientes em função da idade do dendezeiro.

A distribuição percentual da quantidade acumulada de macronutrientes mostra uma redução do potássio e magnésio com a idade. Cálcio e, principalmente, nitrogênio apresentaram pouca variação, enquanto fósforo e enxofre tiveram o mesmo padrão, sem flutuações (Figura 43).

As equações de regressão da extração total de macronutrientes pela planta, em função da idade, estão contidas na Figura 44. Verifica-se que, para nitrogênio, fósforo, cálcio e enxofre, a equação do segundo grau ascendente foi a que melhor se ajustou, enquanto para potássio e magnésio, foi a linear ascendente. Depreende-se, em função destes resultados, que há uma demanda crescente de macronutrientes com a idade da planta, havendo necessidade de se estudar o comportamento de plantas do dendezeiro com idades maiores.

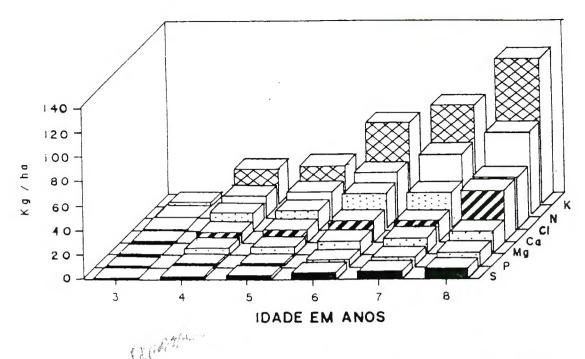


Figura 42. Acúmulo total de macronutrientes e de cloro no dendezeiro, em função da idade.

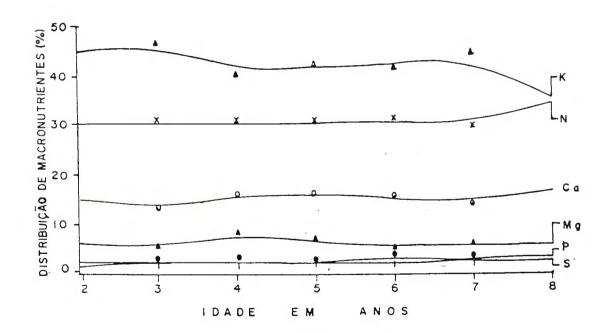


Figura 43. Distribuição percentual do acúmulo total de macronutrientes no dendezeiro, em função da idade.

I

更上

I

100

1

4.4.2. Micronutrientes

Os resultados da extração total de micronutrientes pelo dendezeiro em funcão da idade, estão contidos
na Tabela 23. À semelhança dos macronutrientes, houve
incremento na extração total, com o decorrer dos anos.

O cloro apresentou-se como o mais extraído pela planta chegando à valores comparativos aos do cálcio, tendo sido inclusive mais absorvido do que fósforo, magnésio e enxofre (Figura 42). O cloro recrutou aos oito anos, 320,33 kg/ha, cerca de 93,1% em relação aos demais micronutrientes. Esta quantidade extraída corresponde a 680 kg/ha de cloreto de potássio com 47% de Cl. Estes resultados vêm confirmar a importância desse nutriente para o dendezeiro, já constatado por outros pesquisadores com a equação de regressão das quantidades totais extraídas na Figura 44.

As quantidades imobilizada, reciclada e exportada de cloro, também, aumentaram com a idade das plantas (Fiigura 45a). A reciclagem do cloro, proporcionada pelas folhas, mostrou-se superior à quantidade imobilizada até o quarto ano, igualando-se no quinto, porém à partir do sexto, foi inferior.

A quantidade removida de cloro pelos cachos, aos oito anos, foi respectivamente, 3,2 e 1,3 vezes menor do que a reciclada e a imobilizada.

Tabela 23 - Acúmulo total e distribuição percentual de micronutrientes no dendezeiro, em função da idade.

2. 日本世世世上日上五年五年五月

TDADE	CID	CLORO		00	COBRE		B(BORG		FERRO		NANGANĒS	ES	OON 17	
(ANOS) 'g/p ¹		ch3	% kg/ha	d/8w	%	g/ha	d/8m	%	g/ha	% d/8m	в/на	% d/8ш	g/ha	% d/8m	в/на
														0 077	18 81
2	60,48f 94,2	94,2	8,64	8,64 143,59e 0,2 20,	0,2	20,53	221,89f 0,4 31,73	7,0	31,73	2399,57d 3,7	343,14	710,878 1,1 101,65	1 101,65	t'0 5446 1/7	
ы	172,42£ 95,3 24,65	95,3	24,65	517,56de 0,3	0,3	74,01	459,466 0,3		65,70	3533,66d 2,0	505,31	2472,34f 1,3	3 353,54	1364,28e 0,8	8 195,09
	146.14e	95.7	63.79	446.14e 95.7 63.79 847,42cd 0,2 121	10,2	121,18	,18 1215,01e 0,3 173,74	0,3	173,74	9376,12cd 2,0 1340,78	1340,78	5032,22e 1,0	0 719,60	3438,94d 0,8	8 491,76
, ,	709 114	, 50 x	114.27	200 114 95 8 114 27 1197,70c 0,2 171	0,2	171,27	,27 2027,344 0,3 289,90	0,3		16174,30c 1,9		2312,92 9292,76d 1,1 1328,86	1 1328,86	6117,78c 0,7	,7 874,84
n	****	0.		100	,	,	33 3750 985 0.2 464.89	0.0		50951,21b 3,2 7286,02 13092,14c 0,8 1872,17	7286,02	13092,14c 0,	8 1872,17	6930,15c 0,4	,4 991,12
9	1523,26c	95,2	217,82	1523,26c 95,2 217,82 2239,990	0,2 320	350,32	200,0070	•					1000	0.057, 881, 0	5 1393.4
7	1856,78b	4,56	265,51	1856,78b 95,4 265,51 3320,89a	0,2 474	474,88	,88 4574,85b 0,2 654,20	0,2	654,20	54979,230 2,8	7862,02	7862,02 18024,63b 0,9 2377,32 3234,000 0,3 33337	20,1162 P	0 000,4076	() ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
8	2240,08a	93,1	320,33	2240,08a 93,1 320,33 3366,65a 0,2 481	0,2		6664,598	0,3	953,04	,43 6664,59a 0,3 953,04 119082,74a 5,0 17028,83 23734,21a 0,9 3393,99 12265,63a 0,5 1753,98	17028,83	23734,21.a O,	9 3393,99	12265,63a 0	,5 1753,

gramas por planta

1

M

L

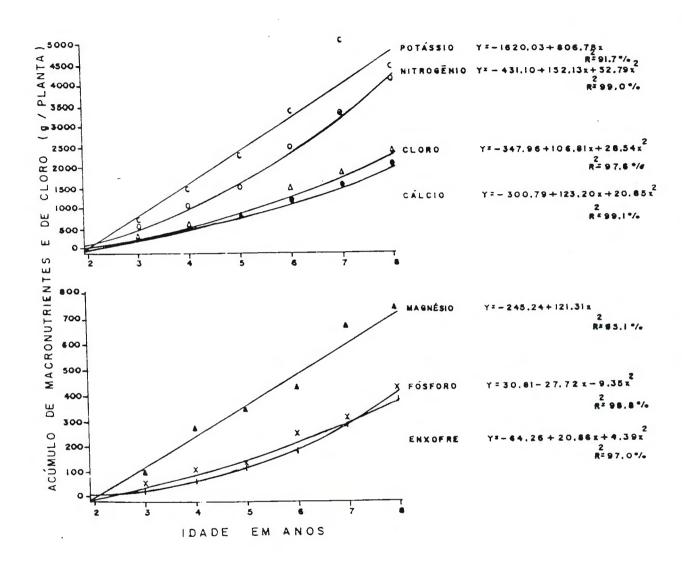


Figura 44. Equações de regressão do acúmulo total de macronutrientes e de cloro no denzeiro, em função da idade.

O cobre foi o micronutriente menos extraído pelo dendezeiro com 3366,65 mg/planta, somente 0,2% em relação aos demais, num total de 481,43 g/ha.

1

Y

T

Houve uma ampla dominância da quantidade imobilizada de cobre em relação à reciclada e removida com o decorrer da idade do dendezeiro (Figura 45b). A quantidade exportada, aos oito anos foi de 1,4 a 4,7 vezes menores do que a reciclada e imobilizada, respectivamente.

A maior extração de boro se manifestou aos oito anos, totalizando 953,04 g/ha, cerca de 0,3% dos outros micronutrientes, sendo o quarto micronutriente mais extraído.

As quantidades imobilizada, reciclada e exportada de boro aumentaram com a idade das palmeiras (Figura 45c). A reciclada superou a imobilizada até os quatro anos porém, à partir dos cinco anos de idade ocorreu uma inversão. A quantidade reciclada e imobilizada de boro foi 3,0 vezes mais elevada do que a removida.

O ferro foi o segundo micronutriente, mais extraído pelo dendezeiro, o que de certo modo, já era esperado devido ao seu alto teor nos solos da Amazônia, inclusive na ecorregião onde foi realizado o presente estudo. Maior extração ocorreu também aos oito anos de idade, com 17028,83 g/ha, cerca de 5% em relação aos demais micronutrientes.

A Figura 46a, mostra que as quantidade imobilizada, reciclada e exportada de ferro aumentaram com a idade

das palmeiras. Verifica-se também, que a quantidade imobilizada deste elemento foi marcadamente superior à reciclada, ficando, inclusive, bem próxima da extração total. A quantidade reciclada aos oito anos de idade foi 1,6 vezes superior à exportada, enquanto a imobilizada, superou a removida até em 70 vezes.

O terceiro micronutriente mais extraído pela cultura foi o manganês. Sua maior absorção se deu, também, aos oito anos, com 3393,99 g/ha, que em termos percentuais, correspondeu somente à 0,9% dos micronutrientes estudados.

O manganês foi o único micronutriente em que a quantidade reciclada superou a imobilizada em todas as idades (Figura 46b). A quantidade imobilizada foi 1,8 vezes mais elevada do que a exportada, enquanto a reciclada até 7,0 vezes maior do que a removida.

O zinco com 1753,98 g/ha, cerca de 0,5% dos demais micronutrientes, apresentou-se como o quarto micronutriente mais extraido pelo dendezeiro.

O comportamento da quantidade imobilizada de zinco foi semelhante aos de cobre e ferro, ou seja, superior à reciclada em todo o transcorrer dos anos (Figura 46c). A quantidade imobilizada aos oito anos, foi 8,5 vezes superior à exportada, ao passo que a reciclada foi 1,3 vezes.

A extração total de micronutrientes foi superior à encontrada por NG et al. (1968a), com relação ao boro, aos cinco e seis anos, cobre, zinco e ferro aos oito anos e inferior para o manganês (Tabela 22).

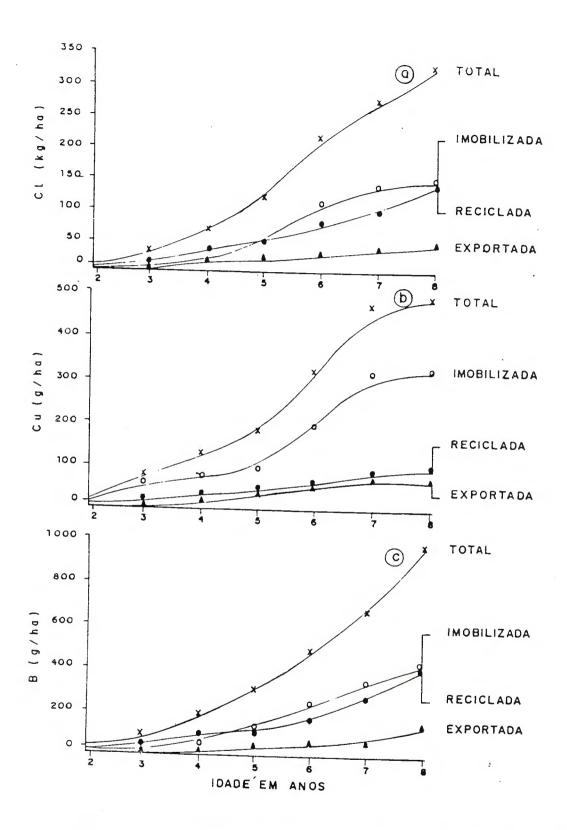


Figura 45. Quantidade imobilizada, reciclada e exportada de cloro (a), cobre (b) e boro (c) no dendezeiro, em função da idade.

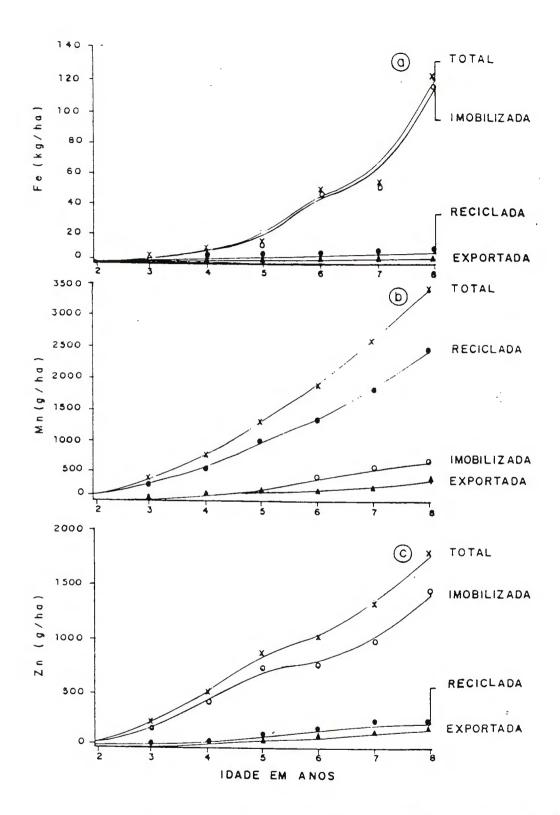


Figura 46. Quantidade imobilizada, reciclada e exportada de ferro (a).
manganês (b) e zinco (c) no dendezeiro, em função da idade.

A quantidade total acumulada de micronutrientes na planta, em função da idade, pode ser melhor visualizada através da Figura 47.

A distribuição porcentual da quantidade acumulada de micronutrientes, indicada na Figura 48, mostra, em relação ao cloro, uma forte estabilidade, o mesmo não ocorrendo com o ferro. O zinco e o manganês apresentaram decréscimos na distribuição aos seis, sete e oito anos de idade, enquanto, o boro e cobre com comportamentos semelhantes, manifestaram pouca flutuação.

As equações de regressão do acúmulo total de cobre, boro, ferro, manganês e zinco são apresentadas na Figura 49, verificando-se melhor ajuste de equações do segundo grau ascendente para todos os micronutrientes, mostrando portanto, demanda crescente com a idade das plantas.

4.4.3. Acréscimos percentuais da extração total de nutrientes

Os acréscimos percentuais da extração total de nutrientes em função da idade do dendezeiro, estão contidos na Tabela 24. Com exceção do potássio, que apresentou redução aos oito anos, todos os demais nutrientes, aumentaram a extração com o decorrer do período. Os acréscimos aos três anos foram os mais baixos, como era esperado, com 328% em média, com relação aos dois anos de idade.

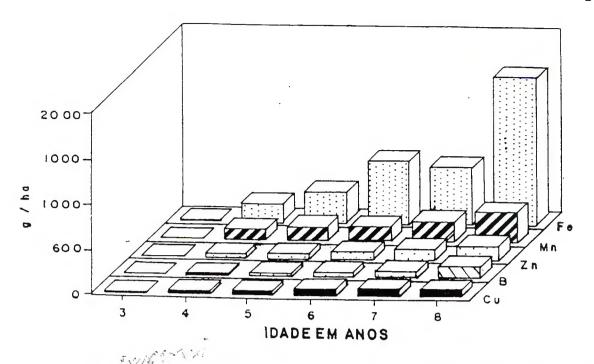


Figura 47. Acúmulo total de micronutrientes no dendezeiro, em função da idade.

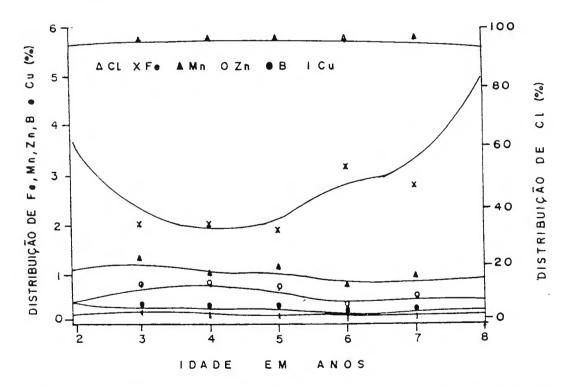


Figura 48. Distribuição percentual do acúmulo total de micronutrientes no dendezeiro, em função da idade.

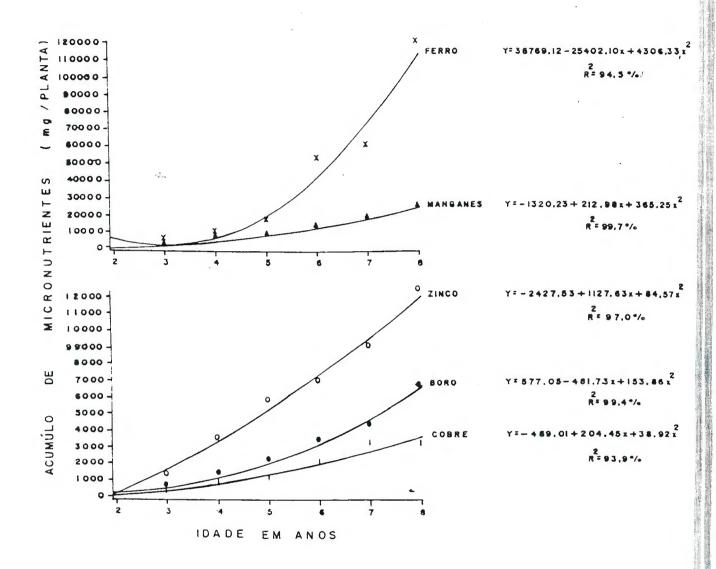


Figura 49. Equações de regressão do acúmulo total de micronutrientes no dendezeiro, em função da idade.

Tabela 24 - Acréscimos percentuais da extração total de nutrientes no dendezeiro, em função da idade.

							
			Idade 	em anos			
utrientes	2	3	4	5	б	7	8,
N	100,0	327,9	817,7	1205,0	1852,7	2551,3	3147,5
P		296,2	994,7	1235,3	2063,9	3200,0	4414,2
K	100,0	339,3	737,4	1128,1	1666,6	2574,4	2195,9
Ca	100,0	288,0	857,3	1287,5	1857,2	2474,2	3100,8
Mg	100,0	284,0	1099,1	1344,2	1561,1	2583,0	2777,8
S	100,0	558,5	1351,2	2243,9	4407,3	5347,5	6437,8
Cl	100,0	285,0	738,3	1322,5	2521,0	3073,0	3707,
Cu	100,0	360,0	590,2	834,2	1560,2	2313,1	2345,
В	100,0	207,0	547,5	913,6	1465,1	2061,7	3003,
Fe	100,0	147,2	390,7	674,04	2123,33	2291,1	4962,
Mn	100,0	347,8	707,9	1307,2	1841,7	2535,6	3338,
Zn	100,0	502,6	1267,0	2254,1	2553,7	3410,0	4519,
Média		328,6	841,6	1312,4	2122,8	2867,9	3662

Aos quatro anos os acréscimos foram 2,5 vezes mais elevados do que aos três anos e, a partir dos cinco anos, atingiram valores excepcionais, com médias acima de 1000%. Esses resultados são relevantes do ponto de vista prático, pois permitem ter-se uma idéia das necessidades de adubação. Por exemplo, aos cinco anos, excluindo cobre, boro e ferro, todos os demais nutrientes apresentaram acréscimos de extração superiores à 1000% em relação ao segundo ano de idade, devendo ser o ponto de partida para uma aplicação de fertilizantes mais intensa na cultura do dendezeiro.

Destacam-se, os resultados obtidos enxofre, pois foi o nutriente que manifestou maior acréscimo percentual em termos de extração em todos os anos, de 1351%, aos quatro anos, para aos oito anos ser de 6437%. Isso vem de se utilizar, com maior demonstrar a necessidade frequência, fertilizantes contendo enxofre, para suprir essa carência, devido serem, os solos da Amazônia, pobres nesse elemento. No caso do dendezeiro essa necessidade pode ser atenuada através do suprimento do enxofre proveniente, principalmente, da mineralização da matéria orgânica da Pueraria phaseoloides, utilizada como cobertura do solo. Entretanto, com o envelhecimento das palmeiras, ocasionando maior sombreamento da área, ocorre um raleamento dessa leguminosa, havendo com isso, redução acentuada no fornecimento de enxofre. Verifica-se também que, aos oito anos, além do enxofre, os nutrientes com maiores acréscimos na

M

FIFE

阿

NE.

extração foram fósforo e nitrogênio. Esses resultados ratificam o que já foi discutido anteriormente, sobre um suprimento mais adequado desses elementos. Do mesmo modo que o enxofre, grande parte do fornecimento do nitrogênio para o dendezeiro é proveniente da *Pueraria phaseoloides*, portanto caso não seja fornecido suprimento adequado, esse elemento pode tornar-se limitante para a produção, devido ao raleamento e o consequente desaparecimento da leguminosa. No caso do fósforo, a situação torna-se mais grave, pelo fato dos solos da Amazônia, serem muito pobres nesse elemento.

No tocante aos micronutrientes, atenção especial deve ser dada ao zinco, que apresentou os maiores acréscimos. As deficiências de zinco, em algumas plantas da Amazônia, como por exemplo na seringueira, causadas principalmente pelas adubações pesadas de fósforo, têm sido bastante comuns. Os primeiros sintomas de deficiência desse micronutriente no dendezeiro, já começaram a se manifestar no Estado do Amazonas.

O ferro também apresentou elevado acréscimo na extração pelo dendezeiro, entretanto, pela sua riqueza nos solos da Amazônia, esse elemento não deve constituir-se problema. O mesmo não se pode afirmar do manganês, e principalmente, do boro, sendo este último, o micronutriente mais limitante para a dendeicultura, com ênfase nas áreas com estação seca definida. O cobre apresentou compor-tamento semelhante ao do boro. A deficiência de cobre na Amazônia,

nos Estados do Pará e Amazonas, têm se restringido à plantas de viveiro, tendo como causa principal, as adubações pesadas com nitrogênio e fósforo.

4.5. Exportação de nutrientes

- Jean

4.5.1. Macronutrientes

Os resultados da exportação de macronutrientes e a distribuição percentual nos constituintes dos cachos (espiguetas, pedúnculos e frutos) estão contidos na Tabela 25. Depreende-se que houve variação nas quantidades exportadas de todos os macronutrientes com o decorrer da idade, sendo maior no oitavo ano. Há portanto, necessidade de se estudar a exportação de nutrientes em dendezeiros com mais de oito anos de idade.

A maior exportação de nitrogênio foi de 410,10 g/planta no oitavo ano e a menor, como já era esperado, no terceiro com apenas 7,84 g/planta. Em termos quantitativos foi o segundo macronutriente mais exportado pelo dendezeiro. Dentre os constituintes dos cachos, os frutos apresentaram maior participação na quantidade exportada de todos os macronutrientes, seguido pelas espíguetas e, por último pelos pedúnculos.

M

A participação percentual da exportação de nitrogênio pelos frutos em função da idade, em relação aos demais componentes dos cachos variou de 52,9% a 87,2%, nas espiguetas de 9,3% a 33,35%, enquanto nos pedúnculos apenas de 3,5% a 13,8% (Tabela 25).

A análise de regressão para a quantidade exportada de nitrogênio pelos cachos, conforme já mencionada, obedeceu à uma equação do segundo grau ascendente, $y=-99,81+22,55x+6,17x^2$, com 98,2% de coeficiente de determinação, mostrando portanto um erro muito pequeno (Figura 9a).

A exportação quantitativa de fósforo superou apenas a do enxofre. A maior exportação pelos cachos foi de 80,57 g/planta e a menor de 0,89 g/planta no terceiro ano, correspondendo respectivamente a 11,52 kg/ha a 0,13 kg/ha.

A exportação percentual de fosforo pelos frutos variou de 56,8% a 92,5%, pelas espiguetas de 4,8% a 28,45% e pelos pedúnculos, de 2,7% a 14,8% (Tabela 25).

A análise de regressão revelou que a quantidade exportada de fósforo pelos cachos pode ser estimada através da equação do segundo grau, $y = 3.98 - 5.96x + 1.91x^2$, com 97,7% de coeficiente de determinação (Figura 9b).

O potássio foi o macronutriente mais exportado quantitativamente pelo dendezeiro. A exportação mais elevada foi 834,72 e a mais baixa de 18,67 g/planta, correspondendo respectivamente a 119,36 a 2,66 kg/ha.

Tabela 25 - Exportação e distribuição percentual de macronutrientes no dendezeiro, em função da idade.

Idade	Pedu	nculos	S	Es	piguet	as	Fr	rutos		Ca	chos
(Anos)	g/p	%	kg/ha	g/p	% 1	g/ha	g/p	%	kg/ha	g/p	kg/h
					1	NITROGĒNI	IO O		-		
3	1,08f	13,8	0,15	2,61f	33,3	0,37	4,14e	52,9	0,59	7,84e	1,12
4	4,36e	3,5	0,62	11,68e	9,3	1,67	109,71d	87,2	15,69	125,77d	17,98
5	12,62d	8,6	1,80	32,44d	22,1	4,64	101,76d	69,3	14,55	146,84d	20,99
6	16,63c	6,5	2,38	75,87c	29,7	10,85	163,16c	63,8	23,33	255,67c	36,56
7	28,46b	8,0	4,07	92,29b	25,8	13,20	237,30ъ	66,2	33,93	358,05b	51,20
8	39,04a	8,1	5,58	134,44a	28,0	19,22	306,61a	63,9	43,84	480,10a	68,66
						FÓSFOR	0				
3	0,13e	14,8	0,02	0,25d	28,4	0,03	0,50d	56,8	0,07	0,89e	0,13
4	0,43e	2,7	0,06	0,76d	4,8	0,11	14,76c	92,5	2,11	15,96d	2,28
5	1,07d	5,8	0,15	2,75d	14,8	0,39	14,80c	79,4	2,12	18,63d	2,66
6	2,35c	6,0	0,34	6,05c	15,3	0,86	31,10b	78,7	4,44	39,51c	5,65
7	3,67b	7,0	0,52	13,51b	26,1	1,93	34,68b	66,9	4.,96	51,86Ъ	7,42
8	5,63a	7,0	0,80	16,37a	20,3	2,34	58,56a	72,7	8,37	80,58a	11,52
					•	POTĀSS				•	•
3	3,78e	20,2	0,54	5,00d	26,8	0,71	9,88e	53,0	1,41	18,67e	2,66
4	19,78d	9,5	2,83	18,70d	9,0	2,67	169,98c		24,31	208,47d	29,81
5	51,13bc	22,5	7,31	75,13c	33,1	10,74	100,68d	44,4	15,25	226,95d	32,45
6	46,50c	9,9	6,65	146,62b	31,2	20,97	276,73b	58,9	39,57	469,86c	67,19
7	57,75b	10,1	8,54	156,11b	27,5	22,32	355,00a	62,4	50,76	568,86b	81,35
8	110,56a	13,3	15,81	418,24a	50,1		305,91b	36,6	43,74	834,72a	119,36
			•		,	CĂLCIO				•	,
3	0,28d	10,6	0,04	0,78e	29,2	0,11	1,60e	60,0	0,23	2,68e	0,38
4	1,50d		0,21	4,48de	-	0,64	54,91d	90,2	7,85	60,89đ	8,71
5	7,50c	10,2	1,07	7,35d	9,9	1,05	58.98cd	79,9	8,43	73,84c	10,56
6	10,24b	8,4	1,46	44,34b	36,0	6,34	67,26c	55,2	9,62	121,845	16,78
7	11,48b	9,7	1,64	20,09c	17,1	2,87	85,81b	73,2	12,27	117,38ъ	17,42
8	22 , 55a	7,7	3,22	68 , 17a	23,3	9,75	201,64a	69,0	28,83	292,36a	41,81
	•				,	MAGNÉS		,		_ ,	,
3	0,13e	7,2	0,02	0,51d	28,2	0,01	1,17d	64,6	0,17	1,81e	0,26
4	0,80d	2,2	0,11	0,57đ	4,2	0,30	34,93c	93,6	4,99	37,31d	5,33
5	2,82c	6,2	0,40	6,83c	14,9	0,98	36,25c	78,9	5,18	45,91d	6,56
6	2,66c	3,4	0,38	17,48b	22,2	2,50	58,65b	74,4	8,39	78,80c	11,27
7	3,67b	3,8	0,52	18,95b	19,9	2,71	72,78a	76,3	10,41	95,38b	13,64
8	5,48a	4,4	0,78	40,40a	32,0	5,78	30,30a	63,6	11,48	126,19a	13,04
	ĺ			. ,	,-	ENXOFRI		,-	,	,	,
3	0,03d	5,3	0,004	0,05e	8,8	0,007	°0,49d	85,9	0,07	0,57e	0,08
4	0,16d	1,2	0,02	0,36e	2,7	0,05	13,10c	96,1	1,87	13,63d	1,95
5	0,39d	2,2	0,05	1,84d	10,3	0,26	15,60c	87,5	2,23	17,83d	2,55
6	1,50c	4,6	0,21	5,80c	17,8	0,83	25,24b	77,6	3,41	32,55c	4,65
7	3,67a	9,0	0,52	7,72b	18,9	1,10	29,52b	72,1	4,22	40,91b	5,85
8	2,50b	4,4	0,36	17,03a	30,3	2,43	36,68a	65,3	5,24	56,22a	8,04

⁽¹⁾ Considerando 143 plantas por hectare.

Em termos percentuais a exportação de potássio, nos frutos, em decorrência da idade, variou de 36,6% a 81,5%, nas espiguetas, de 9% a 50,1% e nos pedúnculos de 9,5% a 22,5%.

A equação de regressão que melhor explicou o comportamento da exportação de potássio foi a do segundo grau ascendente, $y=-118,51+16,44x+12,54x^2$, com 96,6% de coeficiente de determinação (Figura 9c).

O cálcio foi o terceiro macronutriente mais exportado pelo dendezeiro. Exportou no oitavo ano 292,36 g/planta, correspondendo à 41,81 kg/ha, considerando 143 plantas por hectare.

A distribuição percentual da exportação de cálcio nos frutos variou de 55,2% a 90,2%, nas espiguetas de 7,3% a 36,0% e nos pedúnculos de 2,5% a 10,6% (Tabela 25).

A análise de regressão revelou que a quantidade removida de cálcio, pelos cachos, pode ser melhor estimada através de uma equação do segundo grau ascendente, y = $100,72 - 53,41x + 9,18x^2$, com 87,7% de coeficiente de determinação (Figura 17a).

O magnésio exportou no citavo ano 126,19 g/planta, sendo o quarto macronutriente mais removido pelo dendezeiro.

A distribuição percentual da exportação de magnésio pelos frutos, em função da idade, variou de 63,6 a 93,6%, nas espiguetas, de 4,2 a 32,0% e nos pedúnculos, de 2,2% a 7,2% (Tabela 25).

A equação de regressão que melhor estimou a quantidade removida de magnésio, foi a linear ascendente y=-66,01+23,68x, com 97,6% de coeficiente, indicando que a exportação desse macronutriente continua aumentando com a idade das plantas (Figura 17b).

exportado. A maior remoção foi de 56,22 g/planta, e a menor de 0,57 g/planta, correspondendo à 8,04 a 0,08 kg/ha, respectivamente.

A participação percentual dos frutos na exportação de enxofre, em função da idade do dendezeiro variou de 65,3% a 96,1%, nas espiguetas de 2,7% a 30,3%, enquanto nos pedúnculos, com menores valores, de 1,2% a 9,0% (Tabela 25).

A análise de regressão mostrou que a quantidade exportada de enxofre pelos cachos do dendezeiro pode ser estimada pela equação linear ascendente, y = -31,93 + 10,70x, com R^2 de 97,6% (Figura 17c).

Pelos resultados contidos na Tabela 25, verifica-se que em todos os constituintes dos cachos a sequência decrescente dos macronutrientes mais exportados quantitativamente foi: K > N > Ca > Mg > P > S, portanto a mesma do acúmulo. Esta seqüência também foi obtida por NG & THAMBOO (1967), na ecorregião da Malásia, com exceção do enxofre que não foi estudado pelos malaios.

Tabela 26 - Acúmulo total e exportação de nutrientes pelos cachos do dendezelro, em função da idade.

	NTTROGENIO	FÓSFORO	POTÁSSIO	CALCIO	MAGNESIO	ENXOFRE
IDADE (Anos)	ACÚM Kg/h	ACÚMULO EXPORTAÇÃO . Kg/ha Kg/ha %	ACÚMULO EXPORTAÇÃO kg/ha kg/ha %	ACONULO EXPORTAÇÃO kg/ha kg/ha %	ACÚMULO EXPORTAÇÃO kg/ha kg/ha %	ACÚMULO EXPORTAÇÃO kg/ha kg/ha %
8 4 5 9 7 8	61,06 1,12 1,83 152,27 17,98 11,80 224,38 20,99 9,35 344,99 36,56 10,59 475,07 51,20 10,77 586,08 68,66 11,71	3,94 0,13 3,29 13,23 2,28 17,23 16,43 2,66 16,18 27,45 5,65 20,58 42,56 7,42 17,43 58,71 11;52 19,62	93,80 2,66 2,83 203,82 29,81 14,62 311,81 32,45 10,40 460,67 67,19 14,58 711,58 81,35 11,43 606,96 119,36 19,66	26,62 0,38 1,42 79,22 8,71 10,99 118,97 10,56 8,87 171,61 16,78 9,77 228,62 17,42 7,61 286,52 41,81 14,59	10,56 0,26 2,46 40,78 5,33 13,07 49,87 6,56 13,15 57,92 11,27 19,45 95,83 13,64 14,23 103,06 18,04 17,50	4,58 0,08 1,74 11,08 1,95 17,59 18,40 2,55 13,85 36,14 4,65 12,86 43,85 5,85 13,34 52,79 8,04 15,23
	CACIO	COBRE	BORO	FERRO	MANGANES	ZINCO
	kg/ha kg/ha %	g/ha g/ha %	g/ha g/ha %	g/ha g/ha %	g/ha Kg/ha %	g/ha g/ha %
8 4 5 9 7 8	24,65 1,15 4,66 63,79 13,98 21,91 114,27 15,74 13,77 217,82 28,68 13,16 265,51 30,54 11,50 320,33 42,44 13,24	74,01 1,62 2,8 121,18 16,79 14,00 171,27 29,85 17,42 320,32 56,99 17,79 474,88 69,38 14,61 481,43 67,78 14,07	65,70 1,40 2,13 173,74 21,59 12,42 289,90 31,98 11,03 464,89 57,31 12,32 654,20 66,90 10,22 953,04 132,30 13,88	2,13 3533,66 14,91 0,42 12,42 9376,12 205,76 2,19 11,03 16174,30 348,66 2,15 12,32 50951,21 694,74 1,36 10,22 54979,23 637,41 1,15 13,88 119082,74 1636,64 1,37	353,54 4,57 719,60 115,55 1 1328,86 155,76 1 1872,17 166,18 2577,52 225,67 3393,99 339,38	1,29 195,09 1,79 1,91 16,05 491,76 34,91 7,09 11,72 874,84 54,36 6,21 8,87 -991,12 83,49 8,42 8,75 1323,44 121,52 9,18 9,99 1753,98 161,58 9,21

Os resultados da comparação entre o consumo total e a exportação de macronutrientes, em função da idade do dendezeiro com base no peso da matéria seca, considerando uma densidade de 143 plantas por hectare, estão contidos na Tabela 26. Constata-se que a exportação de macronutrientes é muito baixa quando comparada à quantidade acumulada. A porcentagem de exportação, em relação ao acúmulo anual, ratifica esses resultados. A máxima exportação em relação à quantidade acumulada foi de 20,58%, concernente ao fósforo, sendo em termos percentuais o macronutriente mais exportado, seguido pelo potássio e magnésio.

A produção de matéria seca no oitavo ano, em termos médios, correspondeu à 17 t cachos frescos/ha, a qual se aproxima da fornecida pela CRAI, que foi de 20 t cachos/ frescos/ha (Tabela 5). Essa produção foi estimada para 1 tonelada de cachos frescos, para efeito de comparação com os dados obtidos por outros autores, os quais foram sumarizados por NG (1972). Pelos dados contidos na Tabela 27, verifica-se que os resultados deste trabalho, para o nitrogênio, confirmam os encontrados por Maas, Wilbaux¹ e I.R.H.O., citados por NG (1972). Os valores de fósforo são análogos aos encontrados no Zaire e Costa do Marfim. A quantidade exportada de potássio, nos cachos frescos foram altas em relação à maioria dos locais, entretanto estão de acordo com

WILBAUX, R. Les besoins du palmier en matiers nutritives. Bull. Agr. Congo Belge, 28: 547, 1937.

por Blommendal² e Mass, citados NG por determinadas que diz respeito às quantidades de cálcio, (1972).No seus valores foram muito altos quando constata-se que demais países, sugerindo um consumo de luxo. comparados aos Com relação ao magnésio, os valores exportados ficaram mais THAMBOO (1967). próximos dos obtidos por NG & diferenças na exportação de nutrientes, entre as diversas dentre as quais: devem-se à várias causas, localidades. variedades utilizadas, condições edafoclimáticas distintas, adubação, produção, idade fisiológica dos cachos, metodologia de amostragem, etc.

A exportação de macronutrientes, estimados a partir do peso da matéria seca e da concentração de nutrientes, e sua equivalência em fertilizantes em função da idade, encontram-se na Tabela 28. Nota-se que a maior demanda foi pelo cloreto de potássio, atingindo no oitavo ano, 1670 g/planta. Para todos os macronurtientes a necessidade de fertilizantes, no terceiro ano foi inexpressiva, devido à baixa produção nessa idade.

A remoção de nitrogênio, em equivalência de uréia, foi maior aos oito anos de idade, atingindo 954,0 g/planta. Destaca-se a equivalência em calcário dolomítico no oitavo ano, que foi de 1316 g/planta. Essa quantidade aplicada de calcário dolomítico com 15% de Mg, supre a necessidade de sulfato de magnésio no oitavo ano. O mesmo ocorreu com relação ao sulfato de magnésio, que por conter 13% de S, supre as necessidades de sulfato de amônio até o sétimo ano.

BOMMENDAAL, H.N. De oliepalmcultur in Nederlandsch Indie. Tjeenk Willink & Zn. Haarlem (Onze Koloniale Leanbown 13), 1937.

tonelada de cachos frescos de dendê, obtidos por vários pesquisado-Tabela 27. Estimativas das quantidades exportadas de macronutrientes (kg) por res.

MAAS * Sumatra Dura 4,4 1,1-1,9 7,4-10,4 - - GEORGI* Malásia Dura 2,6 0,41 5,9 - - - BLOMNENDAL * Sumatra Dura 6,0 1,1 7,5 1,90 - - - WILBAUX* Zaire Dura 4,5 0,68 4,2 0,54 0,40 - - - FERWERDA* Zaire Tenera 4,5 0,76 4,5 0,76 0,65 - <th>Fonte</th> <th>País</th> <th>Variedade</th> <th>z</th> <th>ъ</th> <th>×</th> <th>Ca</th> <th>Mg</th> <th>S</th>	Fonte	País	Variedade	z	ъ	×	Ca	Mg	S
Sumatra Dura 4,4 1,1-1,9 7,4-10,4 - - Malásia Dura 2,6 0,41 5,9 - - Sumatra Dura 6,0 1,1 7,5 1,90 - - Zaire Dura 4,5 0,68 4,2 0,54 0,40 Zaire - 2,9 0,46 3,0 0,46 0,65 Nigéria - 4,7 0,67 0,46 0,46 0,43 Nalásia Dura 2,9 0,67 4,7 0,67 0,67 0,67 Brasil Tenera 4,0 0,67 7,0 2,9 0,67 0,76 0,76		-	•		<u>.</u>	kg/t cacho	SC		
Malásia Dura 2,6 0,41 5,9 — — Sumatra Dura 6,0 1,1 7,5 1,90 — Zaire Dura 4,5 0,68 4,2 0,54 0,40 Zaire — 2,9 0,46 3,0 0,65 0,65 Nigéria — 4,7 0,67 0,46 0,46 0,46 0,43 Nigéria — 4,7 0,67 4,7 0,67 0,67 0,43 Malásia Dura 2,9 0,46 3,7 0,67 0,67 0,67 Brasil Tenera 4,0 0,67 7,0 2,40 1,06	MAAS *	Sumatra	Dura	4,4	1,1-1,9	7,4-10,4		ı	i
Sumatra Dura 6,0 1,1 7,5 1,90 — Zaire Dura 4,5 0,68 4,2 0,54 0,40 Zaire — 2,9 0,46 3,0 0,65 0,65 Nigéria Dura 2,8 0,58 3,3 0,50 0,43 Costa do Marfim — 4,7 0,67 4,7 0,67 0,67 Malásia Dura 2,9 0,46 3,7 0,77 0,82 Brasil Tenera 4,0 0,67 7,0 2,40 1,06	SEORGI*	Malásia	Dura	2,6		5,9	ı	1	ı
Zaire Dura 4,5 0,68 4,2 0,54 0,40 Zaire - 2,9 0,46 3,0 0,65 0,65 Nigéria Dura 2,8 0,58 3,3 0,50 0,43 Costa do Marfim - 4,7 0,67 4,7 0,67 0,67 0,67 Malásia Dura 2,9 0,46 3,7 0,77 0,82 Brasil Tenera 4,0 0,67 7,0 2,40 1,06	BLOMNENDAL *	Sumatra	Dura	0,9	1,1	7,5	1,90	i	1
Zaire 4,5 0,76 4,5 0,70 0,65 Nigeria - 2,9 0,46 3,0 0,46 0,38 Costa do Marfim - 4,7 0,67 4,7 0,67 0,67 Malásia Dura 2,9 0,46 3,7 0,67 0,82 Brasil Tenera 4,0 0,67 7,0 2,40 1,06	VILBAUX *	Zaire	Dura	4,5	0,68	4,2	0,54	0,40	i
Zaire - 2,9 0,46 3,0 0,46 0,38 Nigeria Dura 2,8 0,58 3,3 0,50 0,43 Costa do Marfim - 4,7 0,67 4,7 0,67 0,67 0,67 Malásia Dura 2,9 0,46 3,7 0,77 0,82 Brasil Tenera 4,0 0,67 7,0 2,40 1,06			Tenera	4,5	92,0	4,5	0,70	0,65	ı
Nigeria Dura 2,8 0,58 3,3 0,50 0,43 Costa do Marfim - 4,7 0,67 4,7 0,67 0,67 0,67 Malásia Dura 2,9 0,46 3,7 0,77 0,82 Brasil Tenera 4,0 0,67 7,0 2,40 1,06	TERWERDA *	Zaire	I·	2,9	0,46	3,0	0,46	0,38	1
Costa do Marfim - 4,7 0,67 4,7 0,67 0,67 0,67 0,67 Malásia Dura 2,9 0,46 3,7 0,77 0,82 Brasil Tenera 4,0 0,67 7,0 2,40 1,06		Nigeria	Dura	2,8	0,58	3,3	0,50	0,43	1
Malásia Dura 2,9 0,46 3,7 0,77 0,82 Brasil Tenera 4,0 0,67 7,0 2,40 1,06	R.H.O.*	Costa do Marfim	ı	4,7	0,67	4,7	0,67	0,67	ı
Brasil Tenera 4,0 0,67 7,0 2,40 1,06	VG & THAMBOO∗	Malásia	Dura	2,9	0,46	3,7	0,77	0,82	1
	resente Trabalho	Brasil	Tenera	4,0	0,67	7,0	2,40	1,06	0,47

* Fonte: NG (1972)

Tabela 28 - Exportação de nutrientes e sua equivalência em fertilizantes no dendezeiro, em função da idade.

	S.A.6	kg/ha g/p						4 256,U
Enxofre			1	1	1	1	t	36,54
En	Exportação	kg/lia	0,08	1,95	2,55	4,65	5,85	8,04
	1g 5	g/p	8,0	77,0	100,0	222,0	370,0	1
Magnésio	SO ₄ N	kg/ha g/p	1,07 8,0	10,94 77,0	14,25 100,0	31,74 222,0	52,82 370,0	5
Magı	Exportação SO ₄ Mg ⁵	kg/ha	0,26	5,33	95,9	11,27	13,64	18,04
		g/p	1,70 12,0	275,0	333,0	74,90 524,0	76,87 538,0	1316,0
Cálcio	C.D.4	kg/ha g/p	1,70	39,30 275,0	47,66 333,0	74,90	76,87	188,20 1316,0
Ö	Exportação	kg/ha	0,38	8,71	10,56	16,78	17,42	41,81
		g/p	5,32 37,0	417,0	454,0	943,0	1138,0	1670,0
Potássio	KC1 ³	kg/ha g/p	5,32	59,62 417,0	64,90 454,0	134,80 943,0	162,70 1138,0	238,72 1670,0
Pot	Exportação	kg/ha	2,66	29,81	32,45	61,19	81,35	119,36
		g/g	5,0	81,0	0,56	0,002	0,497	410,0
Fósforo	S.F.T.2	kg/ha g/p	0,66 5,0	11,60 81,0	13,54 95,0	28,75 200,0	37,76 264,0	58,62 410,0
Fós	Exportação	kg/ha	0,13	2,28	2,66	5,65	7,42	11,52
		g/p	2,49 17,0	280,0	46,64 326,0	568,0	0,967	0,456
Nitrogênio	Uréia	kg/ha g/p	2,49	39,96 280,0	49,94	81,24 568,0	113,78 796,0	136,36 954,0
Nitro	Exportação	kg/ha	1,12	17,98	20,99	36,56	51,20	99,89
	Idade	(anos)	3	4	5	9	7	8

1 - Com 45% N

2 - Superfosfato triplo com $45\%~{\rm de~P_2O_5}$ e 18% de CaO

3 - Cloreto de potássio com 60% de $\mathrm{K}_2\mathrm{O}$

4 - Calcário dolomítico com 30% de CaO e 15% de MgO

5 - Sulfato de magnésio com 17% de MgO e 13% de S

6 - Sulfato de amônio com 22% de S e 20% de N.

4.5.2. Micronutrientes

A Tabela 29, contém os resultados da exportação e distribuição percentual de micronutrientes em função da idade do dendezeiro. Verifica-se, à semelhança do ocorrido para os macronutrientes, variação na quantidade exportada de micronutrientes com a idade das palmeiras, sendo em geral, mais elevada aos oito anos de idade. A maior participação dentre os constituintes dos cachos foi também dos frutos, seguido das espiguetas e pedúnculos.

O cloro foi o micronutriente mais exportado, sendo superado apenas pelo potássio e nitrogênio. A maior exportação deste micronutriente foi de 296,80 g/planta, correspondendo a 42,44 kg/ha, que em termos de cloreto de potássio (47% de Cl), corresponde à 90 kg/ha.

Variou de 37,3% a 91,7%, a participação percentual dos frutos na exportação de cloro, em relação aos demais componentes dos cachos de 6,5% a 49,4% as das espiguetas e de 1,8% a 13,7% dos pedúnculos (Tabela 29).

A análise de regressão, mostrou que a quantidade exportada de cloro, pode ser estimada pela equação linear ascendente, y = -141,26 + 53,77x, com 95,06% de coeficiente de determinação (Figura 10a).

O cobre foi o micronutriente menos exportado quantitativamente pelo dendezeiro. Até o sétimo ano apresentou comportamento semelhante ao boro, porém, no oitavo

ano exportou cerca de duas vezes menos. A maior exportação ocorreu no sétimo ano, que não diferiu significativamente do oitavo e foi de 485,15 mg/planta correspondendo à 69,38 g/ha.

A participação percentual da quantidade exportada de cobre pelos frutos, variou de 49,2% a 84,3%, nas espiguetas, de 11,3% a 34,6% e nos pedúnculos, de 4,4% a 21,1% (Tabela 29).

A análise de regressão mostrou que a exportação de cobre pode ser estimada pela equação $y = -580,02 + 222,26x - 10,84x^{\pm}$, com 94,3% de coeficiente de regressão (Figura 25b).

A maior exportação de boro foi no citavo ano, sendo de 925,21 mg/planta, que representa 132,30 g/ha.

Percentualmente a menor exportação de boro nos frutos foi de 40,0% e a maior de 78,6%, nas espiguetas de 13,4% a 35,9% e nos pedúnculos, de 8,0% a 30,8%, respectivamente (Tabela 29).

A quantidade exportada de boro pode ser estimada pela equação do segundo grau y = $226,89 - 142,98x + 27,81x^2$, com 95,1% de coeficiente de determinação.

O ferro foi o segundo micronutriente mais exportado pelo dendezeiro. Exportou no oitavo ano 11445,06 mg/planta ou 1636,64 g/ha, sendo os frutos responsáveis por 61% desta exportação, as espiguetas, por 33,3% e os pedúnculos por apenas 5,7% (Tabela 29).

Tabela 29 - Exportação e distribuição percentual de micronutrientes no dendezeiro, em função da idade.

ldade	Ped	únculo	S	Espigu	ietas		Fru	itos		Cacho	s
Anos)	g/p	%	kg/ha ¹	g/p	%	kg/ha	g/p	%	kg/ha	g/	kg/ha
	· · · · · · · · · · · · · · · · · · ·					CLORO					
3	0,56e	7,0	0,08	1,67d	20,8	0,24	5,79c	72,2	0,83	08,02d	1,15
4	1,72e	1,8	0,24	6,34d	6,5	0,90	89,67b	91,7	12,82	97,74a	13,98
5	11,65d	10,6	1,66	24,14c	21,9	3,45	74,27b	67,5	10,62	110,07c	15,74
6	20,48a	10,2	2,92	71,03b	35,4	10,16	109,05a	54,4	15,59	200,57Ъ	28,68
7	29,34b	13,7	4,19	76,77b	36,0	10,98	107,44c	50,3	15,36	213,60b	30,54
8	39,54a	13,3	5,65	146,53a	49,4	29,95	110,73a	37,3	15,83	296,80a	42,44
	,-	,	•			COBRE					
	.mg/g		g/ha	mg/p		g/ha	mg/p		g/ha	mg/p	g/ha
3	1,39d	12,5	0,19	2,59d	23,3	0,37	7,14d	64,2	1,02	11,13e	1,62
4	5,25d	4,4	0,75	13,46d	11,3	1,92	99,97c	84,3	14,29	118,68d	16,97
5	12,18d	5,8	1,74	48 , 56c	23,3	6,94	147,97c	70,9	21,16	208,72c	29,85
6	38,20c	9,6	5,46	99 , 57b	25,0	14,24	260,78ab	65,4	37,29	398,56b	56,99
7	102,45a	21,1	14,65	81,20b	16,8	11,61	301,50a	62,1	43,11	485,15a	69,3
8	76,83b	16,2	10,99	164,01a	34,6	23,45	233,14b	49,2	33,34	473,99a	67,7
	, , , , , ,	. ,				BORO					
3	3,01d	30,8	0,43	2,85d	29,2	0,41	3,90e	40,0	0,56	9,76f	1,4
4	12,00d	8,0	1,72	20,28d	13,4	2,90	118,68d	78,6	16,97	150,97e	21,5
5	35,10c	15,7	5,02	61,72c	27,6	8,82	126,93d	56,7	18,15	223,76đ	31,9
6	38,76c	9,7	5,54	144,03b	35,9	20,60	218,02c	54,4	31,18	400,81c	57,3
7	65.60b	14,0	9,38	135,10b	28,9	19,32	267,15b	57,1	38,20	467,855	66,9
8	195,96a	21,2	15,15	334,12a	36,1	47,78	395,12a	42,7	56,50	925,21a	132,3
	472,5	,		,	•	FERRO					
3	12,28d	11,8	1,76	37,48a	35,9	5,36	54,62d	52,3	7,81	104,29e	14,9
4	43,50d	3,0	6,22	141,86c	9,9	20,28	1253 , 51a	87,1	179,25	1438,87d	205,7
5	179,40c	7,4	25,65	395,66c	16,2	56,58	1863 , 15a	76,4	266,43	2438,21c	348,6
6	298,645	6,1	42,70	1631,66b	33,6	233,33	2927 , 99b	60,3	418,70	4858,30b	694,7
7	285,05b	6,4	40,76	1501,05b	33,9	214,65	2641 , 30b	59,7	377,70	4427,40b	637,4
8	656,53a	5,7	93,88	3809,79a	33,3	544,80	6978 , 73a	61,0	997,96	11445,06a	1636,6
	,	- 1	•			MANGANÊS	5				
3	2,97d	9,3	0,42	7,95e	24,9	1,77	21,03e	65,8	3,00	31,95e	4,5
4	10,12d	1,2	1,45	30,52e				95,0	109,74	b80,808	115,
5	40,46c		5,78	147,11d			901,72b	c 82,8	128,94	1089,30c	155,
6	46,66c		6,67	280,08c			835,38c	d 71,9	119,46	1162,12c	166,
7	61,30b		8,76	544,70b				61,6	139,00	1578,15b	225,
3	108,18a		15,47	663,13a				67,5	229,08	2373,30a	339,
	,	, ,	,		-	ZINCO					
3	0,76e	6,1	0,11	4,68d	37,4		7 , 06e	56,5	1,00	12,51f	1,
4	7,50d			20,21d				88,6	30,95	244,16e	34,
5	23,88c		3,41	112,91c				64,0	34,80	380,17d	54,
6	21,16c		3,02	127,41c				74,6	62,24	583,86c	83
7	53,355			169,95b	-				89,59	849,80b	121
8	89,21a			271,59a					109,98	1129,92a	161

⁽¹⁾ Considerando 143 plantas por hectare

I

II

I

I

A análise de regressão mostrou que a quantidade exportada de ferco, em função da idade do dendezeiro, pode ser calculada pela equação $y = 4472,17 - 2503,95x + 404,72x^2$, com $R^2 = 89,3\%$ (Figura 33a).

O manganês foi o terceiro micronutriente mais exportado pelo dendezeiro. A maior exportação foi no oitavo ano com 2373,30 mg/planta, que na densidade de 143 plantas, perfaz 339,38 g/ha.

A participação dos frutos na exportação do manganês variou de 61,6% a 95,0%, nas espiguetas de 3,8% a 34,5% e nos pedúnculos, com menor contribuição, de 1,2% a 9,3% (Tabela 29).

A equação de regressão que melhor se ajustou, para a quantidade exportada de manganês pelos cachos, foi a linear y = -1040,28 + 402,56x, com 92,4% de coeficiente de determinação (Figura 33b).

O zinco foi o quarto elemento mais exportado superando o boro e o cobre. Foi de 1129,92 mg/planta a máxima exportação de zinco, correspondendo à 161,58 g/ha.

A participação dos frutos na exportação, em termos percentuais, variou de 56,5% a 88,6%. Nas espiguetas, a mínima participação alcançou 8,3% e a máxima de 37,4%, enquanto nos perdúnculos, foi de 3,1% a 7,9%, respectivamente (Tabela 29).

A equação de regressão y = -662,08 + 217,36x, com $R^2 = 97,8\%$ foi a que melhor se ajustou à quantidade

exportada de zinco, conforme pode se observar pelos dados contidos na Figura 33c.

Pelos resultados apresentados na Tabela 29, constata-se que a sequência decrescente dos micronutrientes mais exportados quantitativamente foi: Cl > Fe > Mn > Zn > B > Cu, obedecendo à mesma ordem do acúmulo. Esta sequência assemelha-se à encontrada na Malásia por NG & THAMBOO (1967), ou seja, Fe > Mn > Zn > Cu > B.

Os resultados comparativos entre o acúmulo total e a exportação de micronutrientes estão contidos na Tabela 27. Registra-se uma participação muito pequena da quantidade exportada de micronutrientes em relação ao acúmulo anual. A máxima exportação, em função do acúmulo, foi de 21,9%, referente ao cloro no quarto ano. O cobre, à partir do quinto ano, apresentou maior participação da exportação em relação ao acúmulo, superando inclusive o cloro. A menor participação da exportação, em relação ao consumo, foi do ferro.

A exportação de micronutrientes, com base nos cachos frescos, mostrou que a remoção de cobre e manganês foram compatíveis com as obtidas por NG & THAMBOO (1967), enquanto as de boro, ferro e zinco, na Amazônia, superaram as da Malásia (Tabela 30).

Tabela 30. Estimativas das quantidades exportadas de micronutrientes (g) tonelada de cachos fresde dendê, na Malãsia e Brasil. COS

Fonte	Pais	Variedade	Cl	Cu B	В	Не	Mn	Zn
					g/t cachos-	hos		
NG & THAMBOO	Malásia	Dura	ı	4,75	2,15	4,75 2,15 24,66 15,06 4,93	15,06	4,93
Presente Trabalho	Brasi1	Tenera	2,496,47 3,99 7,80 96,27 20,00 9,50	3,99	7,80	96,27	20,00	9,50

5. CONCLUSÕES

O incremento anual da altura e diâmetro foi mais acentuado no terceiro e quarto anos, tornando-se menos intenso a partir desse período com uma redução mais intensa do sétimo para o oitavo ano. A produção de matéria seca foi lenta até o terceiro e quarto anos com um aumento acentuado a partir do quinto ano. Contudo, oito anos não foi tempo suficiente para se atingir o máximo de produção de matéria seca. A contribuição dos diferentes componentes na produção de matéria seca obedeceu a seguinte ordem decrescente: estipe > peciolos > ráquis > frutos > espiguetas > inflorescências masculinas > pedúnculos > flechas > "cabbage".

A concentração dos nutrientes nos diferentes componentes aumentou com a idade dos dendezeiros, com exceção do potássio, que diminuiu em alguns órgãos a partir do sétimo ano. As maiores concentrações de nutrientes ocorreram no "cabbage", com exceção do ferro e manganês. A ordem relativa da concentração de macronutrientes nas diferentes partes da planta foi: N > K > Ca > Mg > P > S.

O acúmulo de nutrientes nos diferentes componentes aumentou com a idade das plantas, sendo os maiores valores observados no estipe, com exceção do manganês. O macronutriente mais acumulado foi o potássio seguido pelo nitrgênio, cálcio, magnésio, enxofre e fósforo. Dos micronutrientes, o maior acúmulo foi de cloro seguido de ferro, manganes, zinco, boro e cobre.

As quantidades imobilizadas de potássio, enxofre, cloro, cobre, boro, ferro e zinco superaram as recicladas e removidas. Para o cálcio e magnésio a reciclada foi maior que a imobilizada. Para todos os nutrientes a quantidade exportada foi menor que a reciclada.

A exportação de nutrientes aumentou com a idade e apresentou a mesma ordem decrescente da quantidade acumulada. A exportação percentual de nutrientes em relação a extração pela planta no oitavo ano, em ordem decrescente, foi: P = K > Mg > S > Ca = Cu = Cl = B > N > Mn = Zn = Zn > Fe:

REFERÊNCIAS BIBLIOGRÁFICAS

- AKBAR, U.; TAMPUBOLON, F.H.; AMMIRUDDIN, F.; OLLAGNIER, M. Fertilizer experimentation on oil palm in North Sumatra.

 Oléagineux, Paris, 31(7): 305-12, 1975.
 - BACHY, A. Diagnostic foliaire du palmier à huile niveaux critiques chez les arbres jeunes. Oleagineux, Paris, 19(4): 253-6, 1964.
 - BACHY, A. Diagnostic foliaire du palmier à huile influence de l'age des arbes. Gleagineux, Paris, 20(4): 227-30, 1965.
- 4 & BASTOS, T.X. O clima da Amazônia brasileira segundo Köppen. Belém, EMBRAPA - CPATU, 1982. 4p.
 - SBOTELHO, S.M.; VIÉGAS, I. de J.M.; CORRADO, F.; OCHS, R. Comparação de fontes de adubos fosfatados na nutrição em K, Ca e Mg no dendezeiro. XXIV CONGRESSO BRASILEIRO DE CIÊNCIA DO SOLO, 24., Goiânia, 1993. Resumo. Goiânia, 1993. p.61-2.
 - BREURE, C.J. Factors associated with the allocation of carbohydrates to bunch dry matter production in oil palm (*Elaeis guineensis* Jacq.). London, London & Dami Oil Palm Research Station, 1987. 259p.

- η CALVEZ, C.; OLIVIN, J.; RENARD, J.L. Étude d'une déficience en soufre sur jeunes palmiers à huile en Cote-d'Ivoire.

 Olégineux, Paris, 31(6): 251-5, 1976.
- CORRADO, F. Mission d'agronomie. Paris, CIRAD/IRHO, 1992. 26p. (Rapport EMBRAPA/CIRAD/IRHO, 2399).
- DANIEL, C. & BCHS, R. Amélioration de la production des jeunes palmiers à huile du Pérou par l'emploi d'engrais chloré. Olégineux, Paris, 30(7): 295-8, 1975.
- DUFOURT, F. & QUENCEZ, P. étude de la nutrition en oligoéléments du palmier à huile et du cocotier cultives sur solutions nutritives. Oléagineux, 34(7): 323-8, 1979.
- DUFRENE, E. Photosynthese, consommation en eau et modelisation de la production chez le palmier a huile (*Elaeis guineensis* Jacq.). Paris, 1989. 424p. (Docteur en Science/Universite de Paris Sud Centre D'orsay).
- DUFRENE, E.; OCHS, R.; SAUGIER, B. Photosynthèse et productivité du palmier à huile en liaison avec les facteurs climatiques. Olégianeux, Paris, 45(8-9): 345-53, 1990.
- 43 F.A.O. Production. Rome, 1991. (Statistics Series, 99).
- FERRAND, M.; BACHY, A.; OLLAGNIER, M. Les oligoélements dans la fumure du palmier a huile au moyen Congo leur influence sur la santé des arbres. Glégianeux, Paris, 6(11): 629-36, 1951.

- presentado, D.A.C. Sintomatologia das carências de macronutrientes em casa de vegetação e recrutamento de nutrientes pelo freijó (Cordia goeldiana, Huber) aos 2, 3, 4 e 8 anos de idade implantado em Latossolo Amarelo, Distrófico, Belterra, Pará. Piracicaba, 1985. 194p. (Doutoramento Escola Superior de Agricultura "Luiz de Queiroz/USP).
- GOMES, F.P. Curso de estatística experimental. 4ª ed. São Paulo, Nobel, 1970. 430p.
 - HARTLEY, C.W.S. La palma de aceite. México, Longman, 1983.
 958p.
 - HASSELO, H.N. & BRZESOWSKY, W.J. An evaluation of the variations in the leaf K and Mg contents in oil palms.

 Oléagineux, Paris, 20(11): 661-5, 1965.
 - I.R.H.O. Institut de Recherches pour les Huiles et Oléagineaux. Analyses minerales des plantes, methodes GERDAT. Paris, Montpillier, 1980.
- I.R.H.O. Institut de Recherches pour les Huiles et Oleagineux. Activity report 1989. Oléagineux, Paris, 47(6): 316-22, 1991/92.
- JACQUEMARD, J.C. Contribution à l'étude de la croissance en hauteur du stipe d'*Elaeis guineensis* Jacq. Étude du croisement L2T x D10D. **Oléagineux**, Paris, 34(11): 492-5, 1979.
 - JACQUEMARD, J.C. & BAUDOUIN, L. Contribution à l'etude de la croissance du palmier à huile. Presentation d'un modèle descriptif. Oléagineux, Paris, 42(10): 343-45, 1987.

- RAMACHANDRAN, R.; NARAYANAN. Variation of leaf contents with age of palms in oil palm leaf sampling.

 Oléagineux, Paris, 32(4): 139-45, 1977.
- MAIA, A. de S.; ARAÚJO, J.B. de; LEÃO, A.C.; SANTANA, C.J.L.

 Dendê substituto potencial de óleo diesel. Ilhéus,

 CEPLAC/CEPEC, 1980. 65p.
- MATOS, A. de O. Biomassa, concentração e conteúdo de nutrientes em taxi (Sclerolobium paniculatum, Vogel) de diferentes idades, em Belterra, Pará, Piracicaba, 1993.

 110p. (Doutoramento Escola Superior de Agricultura "Luiz de Queiroz").
- MÜLLER, A.A. O dendê na Amazônia. In: REUNIÃO DA SOCIEDADE BRASILEIRA PARA O PROGRESSO DA CIÊNCIA, 31., 1979.

 Resumos. São Paulo, Sociedade Brasileira para o Progresso da Ciência, 1979.
- NAIR, A.M. & SREEDHARAN, C. Nutritional studies on oil palm (*Elaeis guineensis* Jacq.) relation between nutrient contents in tissue with yield and attributes. **Gléagineux**, Paris, **38**(1): 1-4, 1983.
- NG, S.K. The oil palm, its culture, manuring and utilisation. Berne, International Potash Institute, 1972.
- NG, S.K. & THAMBOO, S. Nutrient contents of oil palms in Malaya. I. Nutrients required for reproduction: fruit bunches and male inflorescente. The Malaysian Agricultural Journal, Kuala-Lumpur, 46(1): 3-45, 1967.

- NG, S.K.; THAMBOO, S.; SOUZA, P. de. Nutrient contents of oil palm in Malaya. II. Nutrients in vegetative tissues.

 The Malaysian Agricultural Journal, Kuala-Lumpur, 46(3): 332-401, 1968a.
- NG, S.K.; ENG, T.C.; THAMBOO, S. Nutrient contents of oil palm in Malaya. III. Micronutrients contents in vegetative tissues. The Malaysian Agriculture Journal, Kuala-Lumpur, 46(4): 412-33, 1968b.
- NG, S.K.; THAMBOO, S.; SOUZA, P. de. Nutrient contents of oil palm in Malaya. Oléagineux, Paris, 24(12): 670-2, 1969.
- NG, S.K. Phosphorus nutrition and fertilization of oil palm. Oléagieux, Paris, 41(7): 307-13, 1986.
- NOIRET, J.M. & GASCON, J.P. Contribution a l'étude de la hauteur et la croissance du stipe d'*Elaeis guineensis* Jacq. Oléagineux, Paris, 22(1): 661-4, 1967.
- OCHS, R. Mission d'agronomie 1989. Paris, CIRAD/IHRO, 1990, 23p. (Rapport EMBRAPA/CIRAD/IRHO, 1966).
- OCHS, R. & CORRADO, F. Reserches agronomiques et application au development de la culture du palmier à huile au Brésil.

 Paris, CIRAD/IHRO, 1985. 59p. (Rapport EMBRAPA/CIRAD/IRHO, 1966).
- OLLAGNIER, M. & OCHS, R. Le chlore, nouvel élément essencial dans la nutrition du palmier a huile. Oléagineux, Paris, 26(1): 1-15, 1971a.

- OLLAGNIER, M. & OCHS, R. La nutricion en chlore du palmier à huile et du cocotier. Oléagineux, Paris, 26(6): 367-72, 1971b.
 - OLLAGNIER, M. & OCHS, R. Les deficiences en soufre du palmier à huile e du cocatier. Oléagineux, Paris, 2741: 193-8, 1972.
- by

 √ OLLAGNIER, M. La nutrition anionique du palmier à huile application a la determination d'une politique de fumure minérale a Sumatra. Oléagineux, Paris, 28(1): 1-10, 1973.
 - OLLAGNIER, M. & OCHS, R. Gestion de la nutrition minérale des plantations industrielles de palmiers à huile. Economies d'engrais. Oléagineux, Paris, 36(8-9): 409-21, 1981.
 - OLLAGNIER, M.; DANIEL, C.; FALLAVIER, P.; OCHS, R. Influence du climatic et du sol sur le niveau critique du potassium dans le diagnostic foliare du palmier à huile.

 Oléagineux, Paris, 42(12): 435-45, 1987.
 - PACHECO, A.R.; TALLIEZ, B.J.; ROCHA, R.L.; LIMA, E.J. Les deficiences minérales du palmier à huile (*E. guineensis* Jacq.) dans la région de Belém, Pará (Brésil).

 Oleagineux, Paris, 40(6): 296-305, 1985.
 - proposition deficience en cuivre en pépiniere de palmiers à huile en Amazonie bresilienne. Oleagineux, Paris, 41(11): 483-9, 1986.
 - PREVOT, P. Oléagineux tropicaux et oligoéléments.
 Oléagineux, Paris, 14(6): 371-5, 1959.

- QUENCEZ, P. & TAFFIN, G. de. Relation entre la nutrition potassique et la pluviométrie en culture de palmiers à huile et de cocotiers. Oléagineux, Paris, 36(1): 1-5, 1981.
- RAIJ, B. van; QUAGGIO, J.A.; CANTARELLA, H.; FERREIRA, M.E.; LOPES, A.S.; BATAGLIA, D.C. Análise quimica do solo para fins de fertilidade. Campinas, Fundação Cargill, 1987. 170p.
 - AREES, A.R. & TINKER, P.B.H. Dry-matter production and nutrient content of plantation oil palms in Nigéria. I. Growth and dry-matter production. Plant and Soil, The Hague, 19: 1, 1963.
 - ROGNON, F. Analyse vegetable dans controle de l'alimentation des plantes. Palmier à huile. Paris, 1984. (Technique et Documentation Lavosier). p.426-446.
 - 50 RUER, P. Relations entre facteurs climatiques et nutrition minérale chez le palmier à huile. Oléaginex, Paris, 21(3): 143-8, 1966.
 - SARRUGE, J.R. & HAAG, H.P. Análises químicas em plantas.
 Piracicaba, ESALQ, Departamento de Química, 1974.
 - SCHNABL, H. & RASCHKE, K., 1980. Potassium chloride as stomatal osmoticum in *Allium cepa* L., a species devoid of starch in guard cells. Plant Physiology, Bethesda, 65: 88-93, 1980.
 - 50 \$\forall \text{SILVA, B.N.R. de; VALENTE, M.A.; VENTURIERE, A.; SILVA, M. de}

 F.F. da; OLIVEIRA, A. da S.; PIMENTA, M. do R.C.

 Diagnóstico de recursos naturais área-programa Guamá
 Acará Mojú. Belém, SUDAM/OEA, 1988. v.1. 177p.

I_

__

- SINGH, R.; MOLLER, M.R.F.; FERREIRA, W. de A. Características da sorção do fósforo relacionadas com propriedades selecionadas de solos dos trópicos úmidos da Amazânia.

 Revista Brasileira de Ciência do Solo, São Paulo, 7: 233-41, 1983.
- SINGH, R. Disponibilidade de micronutrientes em classes dominantes de solos do trópico úmido brasileiro. II. Manganês. Boletim de Pesquisa, Belém (62), EMBRAPA/CPATU, Belém, 1984.
- **SINGH, R. & MOLLER, M.R.F. Disponibilidade de micronutrientes em classes dominantes de solos do trópico umido brasileiro. I. Zinco. Boletim de Pesquisa, Belém (55), EMBRAPA/CPATU, Belém, 1984.
- SURRE, C. Croissance en hauteur du palmier à huile.
 Oléagineux, Paris, 34(11): 491, 1979.
- TAFFIN, G. de & QUENCEZ, P. Aspect de la nutrition anionique chez le palmier à huile et le cocotier. Problème du chlore. Oléagineux, Paris, 32(12): 539-44, 1980.
 - TEOH, K.C. & CHEW, P.S. Rachis tissue testing offers alternative for diagnosing potassium nutrition of oil palms. Better Crop International, Atlanta, 5(2): 22-3, Dec. 1989.
 - TINKER, P.B.H. & SMILDE, K.W. Dry-matter production and nutrient content of plantation oil palms in Nigeria.

 Plant and Soil, The Hague, 19(3): 350-63, 1963.
 - UEXKULL, H.R. von. Response of coconuts to (potassium) chloride in the Philippines. Oléagineux, Paris, 27(1): 13-9, 1972.

- DEXKULL, H.R. von. Potassium nutrition of some tropical plantation crops. In: POTASSIUM IN AGRICULTURE INTERNATIONAL SYMPOSIUM, Atlanta, 1985. Proceedings. Madison, American Society of Agronomy, 1985a. p.929-54.
- UEXKULL, H.R. von. Chlorine in the nutrition of palm trees.

 Oléagineux, Paris, 40(2): 67-72, 1985b.
- UEXKULL, H.R. von. & FAIRHUST, T.H. Fertilizing for hight yield and quality: The oil palm. International Potash Institute. Bern/Switzerland, 1991. 79p.
 - wanasuria, S. Copper deficiency of oil palm on sandy soils in Sumatra. Better Crops International, Atlanta, 7(2): 22-4, 1991.
 - ZAKARIA, Z.Z. & GAMMON, N.J.R. The copper, zinc, manganese, iron and aluminium contents of soils commonly used for Hevea brasiliensis cultivation. Distribution within soil proflils. Journal of the Rubber Research Institute of Malaysia, Kuala Lumpur, 27(2): 68-78, 1979.