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ABSTRACT
This work presents the idea and a prototype of workflow
systems whose definition is based on constraints. The flexi-
bility is reached through the less rigid definition of workflow
definitions - the workflow is defined as a set of pre and post
conditions of activities, which are selected dynamically as
the process instance unfolds. The workflow system besides
dispatching activities that have all their preconditions ful-
filled to be executed, also helps users to decide which ac-
tivity to chose through what if scenarios. The system also
includes an access control model which not only represents
which users have the authority to chose and execute the ac-
tivities but also the authority to override the constraints.
In particular, overriding constraints is itself an activity and
thus may have pre and post conditions defined in other con-
straints. The paper present Tucupi, a prototype of such
constraint based WFMS.

Categories and Subject Descriptors
H.4.1 [Office Automation]: Workflow management

Keywords
Workflow, Fexibility, Constraints, RBAC

1. INTRODUCTION
Workflow management systems (or WFMS) are systems

that allow for the specification, execution, and monitoring
of business processes. In execution, an instance of a process,
or a case goes through a series of activities performed ei-
ther automatically or by people, according to a pre-specified
process definition. In usual business domains the process
definition is created well in advance of its use, and although
most process definition formalisms allow for processes that
have some flexibility, this flexibility is defined in advance as
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conditional execution of different (pre-defined) paths based
on the case data.

In health care processes, as well as others, such as software
design, there is the need for what we call as partial work-
flows, that is, workflows that are only partially defined and
are conditional. When a patient is admitted to a hospital,
one does not have information to define, at that time, all
the activities that will be performed to/on behalf of the pa-
tient. Clearly, after a patient is discharged, one can look
back and see the patient’s stay as the execution of a work-
flow: activities ordered in time were performed to/on behalf
of the patient, but at no moment there was a template (or
a workflow specification) of which the patient’s case was an
instance.

Patient care workflows can be characterized as dynamic
planning workflows. The particularities of a case as it un-
folds defines which activities should be performed in the
future. On the other hand, whoever is in control of the case
does not have total freedom to decide which activities must
be performed and which should not be performed. There are
rules or constraints that must be followed, which impose
the execution of unrequested activities (pre-conditions), or
that forbid the execution of some activities. Furthermore
dynamic planning workflows should help the decision maker
to select which activity should be scheduled, specially given
that different choices of activities may have to satisfy differ-
ent constraint and thus may have to be scheduled in different
ways.

Finally, it may be the case that some of these constraints,
although reasonable in general, should not be applied to a
particular case. Thus it is desirable that some of the con-
straints could be overridable by people with sufficient au-
thorization.

The paper is organized as follows: section 3 presents the
constraint specification of workflow definition; in section 4
we present the implementation of our proposed ideas; in
section 5 we present a discussion about related work; in
section 6 we conclude this paper with a brief analysis and
we propose some future work that can be done as extension
to this paper.

2. SUPPORT FOR PLANNING AND EXE-
CUTION

Workflow systems, as used in business environments, usu-
ally only allow for well defined processes. The workflow defi-
nition for such processes is total and complete: the workflow
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defines all the activities that will be executed in a case and
in which order. Once activity A has finished the system
can compute exactly which activities must start then. In
such defined processes, the workflow system works as a dis-
patcher – at the end of an activity it computes which activ-
ities become enabled and dispatch the case to the executors
of such activities. The control of what will be executed is
in the WFMS, and some control of when the activity will
start (once enabled) is left to the executors themselves (if
the WFMS uses the concept of inboxes).

2.1 Workflow as a helper
In domains with less defined processes, usually there is a

person, or persons, which we will call the controller who
decides which activities must be performed to the case. We
call those activities that the controller explicitly decides to
schedule a target activity. In the hospital example, a physi-
cian (the controller) decides that a surgical intervention (the
target activity) is needed, and thus schedule it.

In the workflow as a helper scenario, the workflow helps
the controller decide on the implications of scheduling the
target activity. They include the need to execute activ-
ities both before and after the target activity (which we
call forced activities). The controller may then decide that
some of the forced activities cannot or should not be exe-
cuted, and thus may query the workflow/helper if she has
enough authority to override some of the constraints, or who
has it.

Constraints are used to represent the rules that create the
forced activities - a constraint can specify that if a target ac-
tivity A is to be executed, then B must happen before it (a
precondition) and C must happen after it (a post-condition).
Constraints are a particular useful representation for this
problem because of its declarative nature, that is, they ex-
press what should happen in a way that is independent on
how this information is used. The rule above could be rep-
resented as an ECA (event-condition-action) rule, but such
representation is more suited for forward reasoning purposes
- the post condition for A can be represented as an ECA rule
(in the event of A’s termination, under all conditions, acti-
vate C), but a rule that specifies that B is a pre-condition
is more cumbersome. Furthermore such ECA rules are less
convenient when reasoning in a what-if scenario which is the
central aspect of a workflow as a helper.

2.2 Workflow as helper/dispatcher
The Tucupi architecture we developed is really a helper/dispatcher

system. Each workflow case has a set of future activities,
that is activities that must be executed for this case, either
because such activity was explicitly scheduled by the con-
troller or because they are forced pre-and post-conditions of
those scheduled ones (and the other future activities).

All future activities that have no open preconditions (de-
scribed below) are considered enabled, that is ready to be
executed. The Tucupi as a dispatcher places all enabled ac-
tivities in the appropriate user’s inboxes. When the server
receives information that an activity is finished, all future
activities that depended only on that one become enabled
and are dispatched to their executors.

New future activities are created by the actions of the
controller. She may schedule a new target activity, which
likely create new forced activities, which themselves may
also spawn forced activities. Future activities may also change

because of constraints that are overridden: an overridden
constraint does not spawn the forced activities an thus the
set of future activities will likely be reduced.

2.3 WRBAC: a support component to over-
riding of constraints

WRBAC [11] is an extension of the Role-Based Access
Control (RBAC [8, 5, 4]) mechanism to workflows. RBAC
defines the classes user, role, privilege and relations among
them: can-play ⊂ user × role, and hold ⊆ roles × priv-
ilege. A user’s privileges are computed indirectly through
the role the user can play (or is playing depending on the
implementation). RBAC seems to be a balance between the
flexibility of a discretionary access control mechanism and
the organizational-wide control but lack of flexibility pro-
vided by a mandatory access control mechanism. At the or-
ganizational level, policies of privileges are defined through
the hold relation: what are the privileges that a database
administrator should have, and what are the privileges that
a surgeon should have. At a more local level users are as-
signed to one or more roles, thus Mary is a surgeon, which
allows her some privileges, but she may also be a database
administrator, which endow her with a different set of rights.

To start, WRBAC makes the connection between the con-
cept of role in workflows (an indirect way of specifying the
possible executors of an activity) and roles in RBAC. Also,
the right to execute an activity is one of the privileges in the
RBAC hierarchy. But more importantly, WRBAC adds to
RBAC the concepts of a workflow case. Using the concept
of a workflow case it is possible to model dynamic rights
and non-rights in extension to the RBAC static modeling of
rights. Thus, by using constrains in addition to the RBAC
relations one can model rules such as: the same person that
received a complain from a customer must answer the cus-
tomer (binding of duties), the execution of a request for
reimbursement and the approval of the request must be exe-
cuted by different people (separation of duties), and if person
A approved B’s request then B cannot be the one to approve
A’s request (mutual separation of duties), and so on. We call
the WRBAC constraint as executor constraints, to dis-
tinguish them from the order constraints which are the main
topic of this paper.

The inclusion of the concept of case in WRBAC solves
a problem of specifying dynamic constraints in standard
RBAC. In RBAC dynamic constraints are modeled through
an entity called session, which is a temporally limited bind-
ing of a user to a role, modeled after the idea of “login on” to
a data base. With sessions, one can model such constraints
as “a same person cannot be the pilot and the navigator
on the same flight” by stating that there can be no sessions
binding the same user to both the pilot and the naviga-
tor roles. But sessions do not capture the needs of workflow
constraints: in the separation of duties example above, users
can be at the same time both the requester and the approver
of some request. What is important is not the temporal di-
mension but the case dimension: the same person cannot be
the approver of his own request.

The WRBAC allows queries such as who?(A,C) that is,
who are the users that can execute activity A, for case C.
The WRBAC will verify which users have static rights to
execute A, and remove from that set all users that violate
some dynamic constraint for case C. WRBAC answers to
this query with a set of users that can perform the activity,
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but to whom the task is assigned is a decision made outside
the WRBAC. The workflow system may offer the activity to
all potential executors and as soon as one accept the task,
the offer is withdraw from the other users. Or the workflow
system may keep a list of tasks attributed to each user and
assign the activity to the user with the least load among the
potential executers. The WRBAC must then be be informed
on which user gets to execute the particular activity for a
case.

3. CONSTRAINT-BASED WORKFLOW SPEC-
IFICATION

We defined a restricted language to represent constraints.
The language define both the preconditions and post condi-
tions of a target activity.

The simplified version of a constraint is illustrated in the
following example:

rule: c1

target: A

precondition: B

precondition: C

postcondition: D

We call such rules above order constraints, to be distin-
guished from other constraints explained in the previous sec-
tion.

The order constraint c1 specifies that to perform the tar-
get activity A, activity B must have ended (precondition:
B), activity C must also have ended, and activity D must
happen after A ended ( postcondition: D).

The full expressivity of the constraint language is reached
by adding the following constraints constructs:

• the precondition can be a disjunction of activities.

• also in precondition there can be a constraint that an
activity should not have happen before the target ac-
tivity.

• the postcondition can be a disjunction of activities.

• the construct parcondition (after parallel condition)
states that an activity must happen before or after the
execution of the target activity.

3.1 Formal definitions and algorithms

• For each defined activity A there must a privilege ex-
ecute(A) in the WRBAC hierarchy which represents
the privilege to execute the activity.

• If A is a target activity, there must be a privilege sched-
ule(A) to schedule the activity

• For each order constraint r there may be a privilege
override(r) to override the constraint

• For each privilege override(r) there may be one or more
rules in which override(r) is the target activity

• For each case c there is a set of users defined as the
controllers of c.

For a constraint of the form:

rule: r

target: A

precondition: B or C

precondition: D

postcondition: E or F

postcondition: G

precondition: not H

parcondition: I

we will say that:

prer(A) = {choice(B, C), D}
negr(A) = {H}
posr(A) = {choice(E, F ), G}
parr(A) = {I}

Notice that the formalism above defines a new activity choice(E,F),
which is the activity of choosing between activities E and F.
For the kind of applications we envision, for example health
care, we feel that choosing between alternatives is a cen-
tral task, unlikely to be executed automatically. Thus we
decided that such activities (which are not represented in
the WRBAC structures - there is no privilege to execute
choice(E,F)) can only be executed by the controllers of the
case.

The current state of the execution of the case is repre-
sented by three sets:

• done(c) is the set of activities that has already termi-
nated for case c.

• sched(c) is the set of target activities already scheduled
for case c.

• over(c) is the set of constraints that has been overrid-
den for the case c. If R is the set of all order con-
straints, we will define rules(c) = R − over(c) the set
of constraints (rules) that are still valid for the case c.

For a current state of execution for a case c, the set of
future activities (fut(c)) is defined by the following fixed
point equation:

fut(c) = sched(c) ∪ {override(x) | x ∈ over(c)} ∪⋃
r∈rules(c)

[prer(a) ∪ parr(a) ∪ posr(a) for all a ∈ fut(c)]

− done(c)

The set of enabled activities enab(c), is the set of future
activities whose preconditions have been satisfied, and is
defined as:

enab(c) = {a ∈ fut(c) | (
⋃

r∈rules(c)

prer(a)) ⊆ done(c)}

A new target activity A can be scheduled by user U in
the current execution context for case c if:

• user U has (through some role) the privilege sched(A)

• user U is a controller of the case c

•
⋃

r∈rules(c) negr(A) ∩ done(c) = ∅ that is, there is no

negative preconditions for A among the activities that
have already terminated.
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If the activity is really scheduled, it is included into the set
sched(c) and thus the current execution context of case c
changes; the sets of future and enabled activities must be
recomputed.

A rule r can be overridden for case c by user U if:

• user U has the right override(r)

• user U has the right sched(override(r))

• the target override(r) can be scheduled

If the rule is indeed overridden, then override(r) must be
included in sched(c). If override(r) ∈ enab(c) then the rule r
can be overridden immediately and thus r must be included
in over(c). This changes the current execution state of the
case, and thus the set fut and enab must be recomputed.

4. THE TUCUPI SERVER
The core of the system is the Tucupi server, which answers

queries and accept commands and updates from a client.
The client is the software that interact with the users and in
particular the client is responsible for authenticating users.
At the time of this writing, the client has not been written
or even specified.The server stores:

• the WRBAC hierarchy and relations

• the set of executor constraints

• a set of order constrains for different processes (work-
flow definitions)

• a relation between a case and the process the case is
an instance of.

• the current state of each case.

• the set of controllers for each case.

The server answers to the following queries:

who(A,C) This query returns the users that can perform
activity A for the case C. This is a pure WRBAC
query;

done(C) This query returns the set of activities already
executed for case C.

enabled(C) This query returns the list of enabled activities
for case C.

enabled(C,R) This query returns the list of enabled activ-
ities for case C, if the rules in the list R where over-
ridden.

not-ready(C) This query returns the list of activities that
are not yet enabled for the case C. This is the set of
future activities minus the set of enabled activities for
case C.

not-ready(C,R) This query returns the list of activities
that would not yet be enabled if the constraints in the
list R where overridden.

what-if(A,C) This query returns the set of enabled and
not ready activities that will be added to case C if
target A would be scheduled. This list is annotated
with the corresponding constraint identification that
forces each of the activities.

what-if(A,C,R) Same as above but returns the set of en-
abled and not-ready activities to be added if target A
would be scheduled and if all constraints in R were
overridden.

The server accept the following updates:

started(U,A,C) This command informs the server that ac-
tivity A for case C started now and that U is the ex-
ecutor of that activity. The executor information is
also passed to the WRBAC component.

ended(A,C) This command informs that activity A for
case C of process W ended at this time;

Finally the server accepts the commands below. Each
command has an entry X, which indicates the user that is
issuing the command (and whose identity has to be verified
by the client). Upon receiving the command the server will
first check if the user X has the right to execute the com-
mand, and if she does execute it. If X does not have the
right the server answers with an error code.

create(X,C,W,U) create a case C as an instance of process
W and define the users in the list U as the controllers
of the case.

add(X,A,C) This command informs the server to schedule
the target activity A for case C.

add-controller(X,C,U Adds users in the list U as con-
trollers of the case C

chosen(X,Y,Z,C) If Y is the activity choice(A,B) for case
C and it is enabled, then choice(A,B) is removed, and
the activity Z ∈ {A,B} is scheduled for case C.

override(X,C,R) Override the constraints in the list R for
case C.

The Tucupi server implements both the workflow as a
helper/dispatcher and the WRBAC component. Tucupi is
implemented in Prolog, with an interface to a data-base to
store the more volatile information (started and ended up-
dates). The WRBAC hierarchies, the executor constraints,
and the workflow constraints are represented as Prolog clauses
that are loaded when the server starts. The server listen to
a fixed IP port where queries, updates, and commands are
accepted.

5. RELATED WORK
To the authors knowledge there is very few works on

constraint or even logic based workflow representation for-
malisms. The closest work to this research is the one re-
ported in [7, 6], in which a flexible workflow is defines as a set
of workflow segments (in a graphic notation). A full work-
flow is constructed by “gluing” these workflow segments.

The work reported in [10] also has similarities with this
one. There, a temporal logic is used to represent the tempo-
ral ordering among activities in a workflow. Our precondition
construct is similar to the temporal operator before used
in that work, it state that the precondition must happen
before the target activity but not immediately before it. In
that work, a non-monotonic logic is used to infer which ac-
tivities are enabled and thus which ones can start immedi-
ately. In our work we use a simpler rule that all activities
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that have all preconditions fulfilled are enabled and thus can
start immediately.

The work reported in [9] share some of the goals Tucupi:
a case oriented workflow-like support system. Their work
(the FLOWer system) is centered on data constraints - pre-
conditions of activities are the existence of value for certain
data fields; this work is centered on activities. In FLOWer,
the unit of overridability is an activity - an activity can be
skipped if a user form the appropriate role requests it - in
Tucupi, the unit is a constraint. FLOWer allows for mul-
tiple executions of an instance of activity through the redo
mechanism, which is not allowed in Tucupi.

Paul Dourish et al. [3] describes Freeflow, a prototype
workflow system that uses constraints as a workflow defini-
tion language. In Freeflow the user has total control over
actions in system - the constraints are seen as guides to the
user - the user is informed that scheduling some activity will
violate some constraint but may schedule it anyway.

Models that tolerate inconsistencies such as divergence in
order of execution, execution by some user different from
the one anticipated and so on, are addressed e.g. by [2,
1]. In Cugola et al [2], a dynamically established deviation
handling policy determines classes of constraints that can be
violated. The dynamic aspect allows one to establish differ-
ent policies for different process phases, or for different users
- an expert may be trusted to violate more constraints than
a novice user. Borgida and Murata [1] propose reifying ac-
tivities and workflows, storing related information in classes
that are accessible at execution time, e.g., ordering of tasks
and constraints. Constraint violations are flagged and han-
dling can be performed either by an automated handler or
by users, by modifying the reified information (e.g. chang-
ing the order of steps). Deviations can be tolerated through
the use of excuses, objects that record, e.g., the authorizing
agent, reason for deviation and so on.

6. CONCLUSION AND FUTURE WORK
The constraint language and formal definitions presented

above have two limitations which are being addressed. The
first one is that they do not allow for repetitions of instances
of activities, which is needed in case of loops or periodic rep-
etitions of activities: after a surgical intervention the inci-
sion must be examined and dressed daily, until the physician
decides it is no longer necessary. The lack of repetition of in-
stances makes this constraint language less expressive than
standard workflow definition languages.

The other limitation is the lack of temporal references in
the constraints. As the example above made clear, health
care examples usually have temporal constraints: the ex-
amination of the incision must be done daily, the patient
fast for at least 12 hours before a surgery, and so on. By
adding temporal constraints, the workflow as a helper be-
comes much more useful: the physician in charge can know
the earliest she could schedule a surgery given the patient
was served a meal three hours ago. The system can also
tell the latest the surgery can start, given a constraint that
the cardiac evaluation must happen in less than two days
before the intervention. In [12] we discuss the solution for
a simplified version of the full temporal constraint problem,
where pre- and post-conditions of all activities are organized
as a forest, that is, there are no two paths relating different
activities.
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