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ABSTRACT

Rice (Oryza sativa L.) is an essential food for more than half of the world's population, and
is crucial for food security and the economy. Grown mainly in flooded soils, this crop faces
challenges such as low pH and excess iron (Fe), resulting from redox conditions that favor
the availability of this element. High concentrations of Fe are toxic to plants, impairing
photosynthesis, gas exchange, anatomical structures, the antioxidant system, nutritional
status, and biomass production. Therefore, management strategies and the use of
biomolecules have been investigated to reduce these effects. Dopamine (DOP) has been
studied as a neurotransmitter with a regulatory role in biotic and abiotic stresses. DOP
attenuates the toxicity of heavy metals, in addition to mitigating the impacts of salinity,
flooding and water stress, through the activation of antioxidant enzymes, improvement of
photosynthetic efficiency, modulation of anatomical structures and increase in nutrient
absorption and biomass. This study aimed to evaluate whether the exogenous application
of DOP reduces oxidative damage in the photosynthetic system of rice plants exposed to
excess Fe, in addition to analyzing changes in leaf structure, production of reactive oxygen
species (ROS), activity of antioxidant enzymes, nutritional status and biomass. The research
was conducted at the Federal Rural University of the Amazon, Paragominas Campus, in a
greenhouse under controlled conditions. Ten-day-old rice seedlings were grown in a
hydroponic system and subjected to four treatments: two concentrations of Fe (250 uM,
control; 5000 uM, excess) and two of DOP (0 uM and 50 uM). DOP was applied to the
nutrient solution from the 20th to the 40th day, while Fe was supplied from the 30th to the
40th day. On the 40th day, physiological and morphological parameters were measured,
and samples were collected for anatomical, biochemical, and nutritional analyses. Data
were submitted to one-way ANOVA and Scott-Knott test (p < 0.05). The results
demonstrated that excess Fe causes significant damage to plants. However, DOP promotes
nutrient accumulation in roots and leaves, providing Fe content in these structures, in
addition to increasing leaf and root anatomy. DOP application minimizes oxidative damage,
elevating photosynthetic pigments and increasing PSII quantum efficiency (®psi) and
electron transport rate (ETR). In gas exchange, increases in net photosynthesis (Py) and
instantaneous carboxylation efficiency (Pn/C;) were observed. DOP also strengthens the
antioxidant defense, increasing the activities of superoxide dismutase (33%), catalase
(29%), ascorbate peroxidase (75%) and peroxidase (17%), while reducing the levels of
reactive oxygen species (O~ and H2O) and oxidative stress markers (MDA and EL).
Although excess Fe reduced biomass, DOP increased shoot, root and total dry matter.
Therefore, DOP alleviates the effects of stress caused by excess Fe in rice plants

KEYWORDS: Antioxidant enzymes. Oryza Sativa. Photosynthesis. Neurotransmitter.
Toxicity



RESUMO

O arroz (Oryza sativa L.) ¢ um alimento essencial para mais da metade da populagdo mundial,
sendo crucial para a seguranga alimentar ¢ a economia. Cultivado principalmente em solos
alagados, essa cultura enfrenta desafios como baixo pH e excesso de ferro (Fe), decorrentes das
condi¢des redox que favorecem a disponibilidade desse elemento. Concentracdes elevadas de
Fe sao toéxicas as plantas, prejudicando a fotossintese, as trocas gasosas, as estruturas
anatomicas, o sistema antioxidante, o estado nutricional e a producao de biomassa. Diante disso,
estratégias de manejo e o uso de biomoléculas tém sido investigados para reduzir esses efeitos.
A dopamina (DOP) vem sendo estudada por ser um neurotransmissor com papel regulador em
estresses bioticos e abioticos. A DOP atenua a toxicidade de metais pesados, além de mitigar os
impactos da salinidade, alagamento e estresse hidrico, por meio da ativagdo de enzimas
antioxidantes, melhoria da eficiéncia fotossintética, modulacdo das estruturas anatomicas €
incremento na absor¢do de nutrientes e biomassa. Este estudo teve como objetivo avaliar se a
aplica¢do exdgena de DOP reduz os danos oxidativos no sistema fotossintético de plantas de
arroz expostas ao excesso de Fe, além de analisar alteragdes na estrutura foliar, produgao de
espécies reativas de oxigénio (ROS), atividade de enzimas antioxidantes, estado nutricional e
biomassa. A pesquisa foi conduzida na Universidade Federal Rural da Amazonia, Campus
Paragominas, em estufa com condi¢des controladas. Mudas de arroz com 10 dias foram
cultivadas em sistema hidropdnico e submetidas a quatro tratamentos: duas concentracdes de
Fe (250 uM, controle; 5000 uM, excesso) e duas de DOP (0 uM e 50 uM). A DOP foi aplicada
na solucdo nutritiva do 20° ao 40° dia, enquanto o Fe foi fornecido do 30° ao 40° dia. No 40°
dia, parametros fisioldgicos e morfoldgicos foram medidos, e amostras foram coletadas para
analises anatomicas, bioquimicas e nutricionais. Os dados foram submetidos a ANOVA
unidirecional e ao teste de Scott-Knott (p < 0,05). Os resultados demonstraram que o excesso
de Fe causa danos significativos as plantas. No entanto, a DOP promove o acimulo de nutrientes
nas raizes ¢ folhas, reduzindo o teor de Fe nessas estruturas, além de aumentar a anatomia foliar
e radicular. A aplicacio de DOP minimiza os danos oxidativos, elevando os pigmentos
fotossintéticos e aumentando a eficiéncia quantica do PSII (®PSII) e a taxa de transporte de
elétrons (ETR). Nas trocas gasosas, observaram-se incrementos na fotossintese liquida (Py) e
eficiéncia instantanea de carboxilagdo (Pn/C;). A DOP também fortalece a defesa antioxidante,
elevando as atividades da Superdxido dismutase (33%), catalase (29%), ascorbato peroxidase
(75%) e peroxidase (17%), enquanto reduz os niveis de espécies reativas de oxigénio (02~ and
H>02)e os marcadores de estresse oxidativo (MDA e EL). Embora o excesso de Fe tenha
reduzido a biomassa, a DOP aumentou a massa seca da parte aérea, das raizes e a massa seca
total. Portanto, a DOP alivia os efeitos do estresse causado pelo excesso de Fe em plantas de
arroz.

PALAVRAS-CHAVE: Enzimas antioxidantes. Oryza sativa. Fotossintese. Neurotransmissor.
Toxicidade.
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1 CONTEXTUALIZATION

Rice (Oryza sativa L.) is one of the most widely grown cereals in the world and an
important source of nutrition and food security for more than half of the global population
(Carrijo; Lundy; Linquist, 2017). This crop is commonly grown in tropical and subtropical
climate regions (Cheng et al., 2019). The largest producers are China, India and Bangladesh.
Brazil, with an annual production of 10.78 million tons, ranks 11th among the world's largest
producers (FAOSTAT, 2022). Rice can be grown in a wide variety of hydrological conditions,
including waterlogged soils, which provide an ideal environment for its growth due to its semi-
aquatic nature (Carrijo; Lundy; Linquist, 2017; Miro; Ismail, 2013).

However, among the main challenges for cultivation in flooded systems is Fe toxicity,
which negatively affects plant development and productivity (Shahid et al., 2014). In flooded
conditions, the reduction in available oxygen leads to a decrease in pH due to anaerobic
microbial activity. It also leads to a low redox potential in the soil, which favors the reduction
of Fe** to Fe?*, a more soluble form that is easily absorbed by the roots (Matthus et al., 2015;
Pan et al., 2014; Sahrawat, 2004). Fe is an essential micronutrient for processes such as
photosynthesis and cellular respiration, but its excess can be highly detrimental, as it causes
oxidative stress, compromises cellular functions, leading to metabolic dysfunction and cell
death (Kar e Panda, 2020; Souza et al., 2024). Symptoms of Fe toxicity include bronzed leaves,
yellowing, reddish spots, edge necrosis, reduced growth, impaired root development, which
causes lower nutrient absorption and affects the health of the plant (Wu et al., 2014; Zahra et
al.,2021).

Agricultural practices (Fageria et al., 2008), water management (Carmona ef al., 2021)
and the use of organic molecules as plant growth regulators as 24-epibrassinolide (Tadaiesky
et al., 2020) and neurotransmitters, y-aminobutyric acid (GABA) (Zhu et al., 2021) and
melatonin (Hoque ef al., 2021) have been studied to reduce Fe toxicity in rice plants in a flooded
cultivation system. In this sense, dopamine (DOP) allows plant organisms to adjust their
responses to biological and environmental stresses. DOP, which belongs to the catecholamine
group of biogenic amines, is a natural neurotransmitter present in both the animal and plant
kingdoms. Discovered in plants in 1968, its endogenous biosynthesis is influenced by some
stress conditions (Kulma; Szopa, 2007; Marchiosi et al., 2020).

Due to its antioxidant properties, this molecule acts directly in the neutralization of
reactive oxygen species (ROS), reducing oxidative damage caused by stresses such as drought,

salinity and heavy metal toxicity (Cao et al., 2023; Gao et al., 2020; Yildirim et al., 2024).
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Exogenous DOP contributes to increased photosynthetic efficiency, reduces oxidative damage
and ensures the functionality of the photosynthetic machinery even under adverse conditions.
This results in improved plant growth, greater carbon assimilation and, consequently, increased
productivity, even in environments subject to severe stress (Abdulmajeed et al., 2022; Ji et al.,
2022; Wang et al., 2023). In this way, DOP acts to mitigate the effects of abiotic stress,
improving plant growth, physiological processes and productivity (Ahammed; Li, 2023; Raza
etal., 2022).

In this context, the hypothesis of this study is that excess Fe causes damage to the
photosynthetic apparatus, nutrient homeostasis, growth, and productivity of rice plants grown
in flooded soils, which is one of the biggest problems in this cropping system (Pinto et al., 2016;
Wairich et al., 2024). However, exogenous application of DOP mitigates stress in plants caused
by heavy metals, salinity, and mineral nutrition imbalances (Li et al., 2015; Liang et al., 2017;
Zhang et al., 2023). It minimizes oxidative damage, protects the photosynthetic apparatus, and
improves the anatomical structures of plants subjected to different stresses (Ji et al., 2022; Jiao
et al.,2019; Pontes et al., 2024).

Therefore, the objective of this study was to evaluate whether the exogenous application
of DOP can reduce oxidative damage in the photosynthetic apparatus of rice leaves exposed to
excess Fe. In addition, the anatomy of leaves and roots was analyzed to verify changes in
anatomical structures, the production of reactive oxygen species (ROS), the activity of
antioxidant enzymes, and the nutritional status of plants. In this sense, this research contributes
to the advancement of studies on neurotransmitters as attenuators of abiotic stresses, especially

in Fe toxicity in flooded rice fields, given that there are no studies on this topic.

2 LITERATURE REVIEW

2.1 Rice (Oryza sativa L.)

2.1.1 General aspects, cultivation and economic scenario

Rice (Oryza sativa L.), native to Asia, was one of the first agricultural crops cultivated
by mankind, becoming an essential staple food in the daily lives of the global population (Zhou
et al., 2022). Rich in calories, minerals such as calcium and iron, it is a considerable source of
vitamin E and B5, carbohydrates, thiamine, folate, phenolic compounds such as phytic acid and
phenols and sterols such as flavonoids, terpenoids, anthocyanins, tocopherols, tocotrienols and
orizanol, among other bioactive compounds (Carrijo; Lundy; Linquist, 2017) which give it
antioxidant, anti-inflammatory, antidiabetic and anticancer properties (Verma; Srivastav,
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2020). Its by-products, such as the husk, bran and germ, have applications in the food, cosmetics
and pharmaceutical areas, as well as in the processing and production of biofuels (Colombo et
al., 2024).

Rice belongs to the Poaceae family and is classified into two subspecies, O. sativa ssp
japonica adapted to more temperate climates and O. sativa ssp indica generally adapted to
lowland tropical cultivation (Yang et al., 2014; Cheng et al., 2019). It is an annual plant that can
reach 1 to 1.8 meters in height, with thin, long leaves. Its flowers grow in pendulous
inflorescences, and the edible grain is a seed containing an embryo capable of germinating and
forming a new plant. The grain is mainly composed of the matured ovary, the lemma and palea
(which, together with other structures, form the shell), as well as the embryo located in the
ventral part, next to the lemma. The edible part of the grain is the endosperm (Panesar; Kaur,
2016).

This species requires temperatures between 27°C and 35°C, high levels of humidity and
an adequate distribution of rainfall, with approximately 100 cm of precipitation, to ensure its
proper growth and development (Kumar; Jeena; Singh, 2019). In flooded rice crops, the
formation of aerenchyma in the roots is more prominent in anaerobic conditions. In addition, it
has a larger cross-sectional radius, larger vascular bundle diameter, greater root thickness and
larger xylem area. These characteristics facilitate the absorption of water and nutrients (Phule et
al., 2019).

Around 75% of the world's rice production comes from flooded soils, corresponding to
an agricultural area of approximately 85 to 90 million hectares (Datta; Ullah; Ferdous, 2017).
Rice cultivated in this environment shows greater vegetative growth, higher productivity,
greater plant height and more tillers, obtaining higher productivity compared to aerobic rice
(Phule et al., 2019; Vijayaraghavareddy et al., 2020). Therefore, it plays a crucial role in
meeting global food demand (Ali; Wani, 2021).

China is the world's largest rice producer with an annual production of 208.49 million
tons, followed by India (196.25 million tons), Bangladesh (57.19 million tons), Indonesia (54.75
million tons), Vietnam (42.67 million tons) and Brazil in 11th place with an annual production
of 10.78 million tons of rice (FAOSTAT, 2022).

In the context of agricultural production in Brazil, the main rice-growing ecosystems are
flood-irrigated rice and upland rice, which encompasses all the other rice-growing systems in
the country. However, most of the country's production comes from irrigated rice farming,

which accounts for 93% of the total (EMBRAPA, 2024). The upland ecosystem consists of
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plant development under aerobic conditions, in which rice can be grown with supplementary
sprinkler irrigation or on a rainfed basis. In the flooded ecosystem, irrigated rice farming
predominates, which includes systems such as traditional, minimum cultivation, no-till, pre-
germinated and transplanting. This system is less dependent on climatic conditions compared
to rainfed cultivation, which contributes to more stable production (Santos, 2021; Sousa et al.,
2021).

Rice is the third most produced grain in Brazil. The 2023/24 rice harvest estimates a
planted area of 1,575,000 hectares and productivity of 6,852 kg/ha. Of the total produced,
flooded rice is estimated to occupy an area of 1,254.7 thousand hectares, with productivity of
7,970 kg/ha and production of 10,000.3 tons. With regard to rainfed rice, the estimate is for a
planted area of 320,300 hectares, productivity of 2,469 kg/ha and production of 790.7 tons,
which are lower than those for flooded rice (CONAB, 2024). Approximately 10.0 million tons
of rice are consumed in the country every year (Silva; Wander, 2023).

Rice production in Brazil is worth close to 17.76 billion reais. Rio Grande do Sul is
Brazil's largest rice-producing state, with a harvest of 7.14 million tons, followed by Santa
Catarina (around 1.18 million tons), Tocantins (604,000 tons), Parané (148,92 thousand tons)
and Mato Grosso (324,71 thousand tons) (IBGE, 2023).

The state of Para ranks 10th nationally, accounting for 1.05% of Brazil's rice production,
with an estimated volume of 106,023 tons. In the Northern Region, the state ranks 3rd, with
11.25% of regional production. The main producer is the municipality of Cachoeira do Arari,
located in the Marajo Archipelago, responsible for 32,000 tons and a harvested area of 9,000
hectares, equivalent to 22.19% of the state's total (SEDAP, 2023).

2.2 Iron (Fe)

2.2.1 Iron in soil

Iron (Fe) is the fourth most abundant element in the Earth's crust, with approximately 5-
6% by weight in sedimentary rocks. In the environment, Fe occurs mainly in two oxidation
states: ferrous (Fe**), which is more soluble and bioaccessible, and ferric (Fe*"), which is less
soluble and less available in neutral or oxygenated environments (Huang et al., 2021). Fe*" can
arise from sources such as chemical and physical weathering, as well as the reduction of
minerals containing Fe**, including ferrihydrite, goethite, lepidocrocite, hematite and magnetite.
Natural processes, such as photolysis and the action of iron-reducing bacteria, also contribute

to the formation and availability of Fe** in ecosystems (Huang ef al., 2021; Kappler
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etal.,2021).

Fe uptake in plants occurs through Strategy I and Strategy II. Strategy I, commonly in
eudicots, is a reduction-based mechanism that involves the excretion of protons from the roots
to the rhizosphere. Proton release requires the reduction of ferric ion to ferrous ion, which is
catalyzed by ferric oxidase reductase (FRO). The Fe-regulated transport protein (IRT) transports
these soluble ions across the plasma membrane to root cells (Dey et al., 2020; Zhong et al.,
2022).

Strategy II is mainly adopted by grasses, in which ferric ion (Fe*") complexes with
chemicals released by the roots, such as phytosiderophores, with mugineic acids (MA) being
the most common. After the formation of the Fe (II[)-MA complex, its entry into root cells
occurs through specific transporters, such as Yellow Stripel (YS1) and Yellow Stripe-Like
(YSLs) (Kar; Panda, 2020; Zhang et al., 2019).

Rice presents Fe absorption mechanisms characteristic of both Strategy I and Strategy
II. In addition to the secretion of phytochelates (MAs), including the transporter OsYSL15,
responsible for the absorption of Fe**-OS complexes, rice secretes phenolic compounds that aid
in the solubilization of the Fe retained in the apoplast. Rice roots also exhibit an increased
expression of the IRT-type transporter, OsIRT1, which facilitates the absorption of Fe?",
predominant in the reducing environment of flooded rice fields (Kaboyashi; Nozoye;
Nishizawa, 2019; Wairich ef al., 2019). In flooded rice paddies, the reduced and soluble form
of Fe (Fe** or ferrous) predominates, which, in excess, affects productivity and, in extreme

cases, can cause total crop loss (Matthus et al., 2015).

2.2.2 Iron in plants and toxicity

Fe is a micronutrient involved in redox reactions in plant cells. It is a constituent of
cytochromes and non-heme iron proteins that participate in photosynthesis, nitrogen fixation,
and respiration (Taiz et al., 2017). Fe cofactors are essential in electron transfer, oxygen and
iron transport and detection, and protein stability (Gao; Dubos, 2021). In chloroplasts, they are
present in iron-sulfur (FeS) proteins, such as photosystem I and ferredoxins. In mitochondria,
they are part of respiratory complexes: FeS (complexes I and II), FeS and heme (complex III),
and heme and copper (complex IV). Peroxisomes and the endoplasmic reticulum contain heme
proteins such as peroxidases and cytochrome P450, while mono- and di-iron enzymes are in all
cellular compartments (Connorton; Balk; Rodriguez-Celma, 2017).

However, ferrous ions that are absorbed by the roots and transported by the xylem
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accumulate in plant tissues and cause overproduction of reactive oxygen species (ROS) by the
Fenton reaction with the involvement of catalytic Fe**, since it catalyzes hydrogen peroxide
(H202), generating the hydroxyl radical (HOe¢) (Lapaz et al., 2022). ROS affect cellular
structures, membranes, DNA, and proteins (Aung; Masuda, 2020), in addition to altering gas
exchange and the photosynthetic apparatus such as the net photosynthetic rate, stomatal
conductance, and transpiration rate (Miiller et al., 2017). Visual symptoms of Fe toxicity in rice
plants include leaf discoloration, called bronzing, the appearance of reddish spots, and reduced
shoot and root growth. Yield losses caused by Fe toxicity depend on the intensity of the stress
and the stage of plant development, and in extreme cases, can result in total crop failure (Wu et
al.,2017).

Rice plants grown in hydroponics under Fe toxicity exhibit anatomical changes in the
roots, such as a reduction in the thickness of the epidermis, exodermis, endodermis, and in the
diameter of the cortex, vascular cylinder, metaxylem, as well as the aerenchyma area (Tadaiesky
et al., 2020). Reductions in these structures compromise root integrity, affect water and nutrient
absorption and reduce oxygen transport (Yamauchi ef al., 2019; Enstone; Peterson; Ma, 2003).
In Fe-tolerant cultivars, a more pronounced deposition of lignin is observed in the roots, in the
outer layers of the cortex (exodermis and sclerenchyma ring, in the secondary deposits of the
cell wall of the tertiary endodermis around the vascular cylinder, in the cells of the primary
xylem parenchyma and in the cells of the medullary parenchyma. These characteristics suggest
a plant tolerance mechanism to excess Fe (Stein et al., 2019). As for leaf anatomy, there are
significant reductions in the thickness of the epidermis on the adaxial and abaxial surfaces, the
area of leaf aerenchyma and the diameter of the bulb cells (Tadaiesky et al., 2020). In addition,
Fe toxicity is associated with the collapse of epidermal and mesophyll cells, resulting in a

reduction in leaf limb thickness (Miiller et al., 2015).

2.3 Dopamine (DOP)

Dopamine (DOP) (3,4-dihydroxyphenethylamine), along with adrenaline and
noradrenaline, is one of the main catecholamines, a group of neurotransmitters found in animals
and plants (Kulma; Szopa, 2007). DOP has the molecular formula CsHi:NO: and a molecular
weight of 153.18. It is an organic compound that is sensitive to light and easily undergoes
oxidation in the presence of oxygen. Biotic and abiotic stresses in plants stimulate an increase
in endogenous DOP levels through the upregulation of DOP biosynthetic genes (Liu et al.,
2020).
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In higher plants, DOP is synthesized from the aromatic amino acid L-tyrosine, which
originates from simple precursors derived from the glycolysis and pentose phosphate pathways
(Ahammed; Li, 2023). There are two main pathways for DOP biosynthesis. In the first pathway,
L-tyrosine is converted into tyramine through a decarboxylation reaction catalyzed by the
enzyme tyrosine decarboxylase. Subsequently, tyramine is hydroxylated by monophenol
hydroxylase, resulting in the formation of DOP. In the second pathway, L-tyrosine is initially
hydroxylated by the enzyme tyrosine hydroxylase, producing levodopa (L-DOPA), which, in
turn, undergoes a decarboxylation reaction catalyzed by dopa decarboxylase, forming DOP
(Kulma; Szopa, 2007; Yllmaz; Gokmen, 2021).

The exogenous application of DOP in plants alleviates stress through various
mechanisms of action. It plays a role in protecting against the harmful effects of heavy metals,
such as cadmium, by reducing oxidative stress, regulating secondary metabolites, and
promoting plant growth (Cao et al., 2023). Additionally, it delays leaf senescence in Malus
hupehensis by reducing the levels of phytohormones that promote aging through the modulation
of gene expression related to hormonal pathways, as it blocks the transmission of signals that
accelerate senescence (Zhang et al., 2023). It enhances the resistance of Lemna turionifera by
increasing the net photosynthesis rate and chlorophyll content while decreasing the abscission
rate (Wang et al., 2023). It reduces oxidative biomarker levels, increases the activity of
antioxidant and non-enzymatic enzymes and osmoprotectant contents, and improves
photosynthetic efficiency, polyamine accumulation, and polyamine metabolic enzyme activity
in Phaseolus vulgaris (Abdulmajeed et al., 2022). Prestes et al. (2025) detect that, under lead
toxicity, DOP application increases root epidermis thickness and significantly enhances palisade
and spongy parenchyma in leaves, as well as improves stomatal performance in Solanum
lycopersicum.

Regarding nutrient deficiency in plants, exogenous DOP has the ability to minimize the
impacts of this stress, such as nutrient deficiency in Malus hupehensis plants, as it significantly
alleviates reductions in growth, chlorophyll concentrations, and net photosynthesis, while also
mitigating disruptions in nutrient absorption, transport, and distribution. Additionally, it
promotes the uptake of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium
(Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) as it alters how these nutrients are
distributed throughout the plant. Furthermore, there is a positive regulation of genes induced by
DOP for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdcGR,
MAMDHAR, MdDHAR-1, and MdDHAR-2) and a negative regulation of genes
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associated with senescence (SAGI2, PAO, and MdHXK) (Liang et al., 2017).

Under nitrogen deficiency, exogenous DOP influences root system architecture, alters
the absorption, transport, and distribution of nitrogen, phosphorus, and potassium, stimulates
the activity of enzymes related to nitrogen metabolism, and induces the expression of genes
associated with ethylene signaling (Liu et al., 2020). Treatment with 100 uM of DOP can
enhance the adaptive capacity of Lactuca sativa under nitrogen deficiency, as it mitigates the
accumulation of reactive oxygen species (ROS), enhances the activity of antioxidant enzymes,
and promotes plant development, productivity, and quality (Farouk ef al., 2023). In cases of
nitrogen excess, DOP, at concentrations of 100 to 150 pM, significantly alleviates the
accumulation of nitrate nitrogen and ammoniacal nitrogen under nitrate conditions, regulates
photosynthesis, carbon metabolism, and nitrogen metabolism in response to nitrate stress (Lan
et al., 2020).

DOP reduces the impacts of salt stress in tomato seedlings, as it helps alleviate oxidative
stress and balance phytohormone levels (Yildirim et al., 2024). The effects of salinity are also
mitigated in Malus hupehensis plants, as DOP positively influences the uptake of potassium
(K), nitrogen (N), phosphorus (P), manganese (Mn), sulfur (S), and copper (Cu), while
inhibiting the absorption of sodium (Na) and chlorine (Cl). This neurotransmitter stimulates the
activity of antioxidant enzymes and enhances the capacity of the ascorbate-glutathione cycle.
Additionally, it positively regulates, in roots and leaves, the genes of the salt overly sensitive
pathway under saline conditions, MdHKT1, MdNHX1, and MdSOS1 (Li et al., 2015).

Exogenous DOP aids in adaptation to water deficiency by inhibiting the degradation of
photosynthetic pigments and increasing the net photosynthetic rate. Additionally, it stimulates
antioxidant enzyme activity and carbohydrate metabolism while regulating the expression of
genes related to nitrogen metabolism, secondary compounds, and amino acids. In soybean
seedlings, this molecule reduces the average germination time and positively modulates the
epidermal tissues, metaxylem, and vascular cylinder in root anatomy, thereby enhancing water
absorption by the seedlings (Pontes et al., 2024). Furthermore, it contributes to alkalinity
tolerance in Malus hupehensis seedlings by increasing antioxidant capacity and chlorogenic acid
levels, as well as promoting plant height, root length, chlorophyll levels, and photosynthetic
capacity (Jiao et al., 2019).

In the case of biotic stresses, such as infections caused by pathogens, exogenous DOP
reduces damage to photosynthetic rates and carbohydrate metabolism by adjusting the

expression of Rubisco regulatory genes (CsrbcL and CsrbceS) and decreasing the expression of
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genes related to chlorophyll degradation (CsPAO and CsRCCR). Additionally, it stimulates the
increase of starch, cellulose, fructose, sucrose, and glucose levels. Consequently, it significantly
promotes the growth of Cucumis sativus under downy mildew stress and reduces the disease
index, contributing to improved resistance to pathogens (Ji et al., 2022). Moreover, reduced
H:0: levels and increased accumulation of phenolic compounds and salicylic acid have been

observed in Malus domestica infected by Valsa mali and treated with DOP (Liu et al., 2022).
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Dopamine promotes tolerance in rice under iron excess by improving root anatomy, ionic balance,
photosynthetic performance, and biomass

Abstract

Rice (Oryza sativa L.) is an essential food crop, usually grown in flooded soils. However, these
environments, especially with low pH, favor iron (Fe) toxicity due to the low redox potential, which
increases the Fe?" availability. Excessive Fe concentrations are highly detrimental, compromising the
growth, physiology, and productivity of rice plants. In this context, dopamine (DOP) has emerged as a
bioactive molecule with the potential to mitigate stresses in plants. Therefore, the objective of this study
was to evaluate whether the exogenous application of DOP attenuates oxidative damage in the
photosynthetic apparatus of rice leaves subjected to excess Fe, as well as to analyze anatomical changes,
production of reactive oxygen species (ROS), activity of antioxidant enzymes, and the nutritional status
of plants. Fe excess caused the accumulation of this element in roots and leaves, reducing the uptake of
other essential nutrients. However, the application of DOP significantly increased the nutritional status
while reducing the accumulation of Fe in plants. In the anatomy, DOP promoted improvements in root
structures, primarily in the thickness of the root epidermis (21%), as well as enhancements in leaves,
including an increase in chlorophyll parenchyma (11%). DOP also minimized damage to the
photosynthetic apparatus, increasing the levels of photosynthetic pigments and significantly increasing
the effective quantum yield of PSII photochemistry (13%) and electron transport rate (13%). In gas
exchange, the DOP application in plants under Fe excess promoted increases in the net photosynthetic
rate and water use efficiency with increases of 14% and 25%, respectively. The antioxidant defense was
intensified by DOP, with increases in the activities of superoxide dismutase (33%), catalase (29%),
ascorbate peroxidase (75%) and peroxidase (17%). In parallel, there was a reduction in the ROS
accumulation, including superoxide (14%) and hydrogen peroxide (8%), as well as malondialdehyde
(37%) and electrolyte leakage (4%). Finally, the biomass was negatively impacted by excess Fe; however,
DOP promoted increases in stem and root growth, proving its effectiveness in mitigating the toxic effects

of Fe in rice.

Keywords: Metal toxicity; neurotransmitter; Oryza sativa; resilience mechanism.
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Introduction

Rice (Oryza sativa L.) is an important food crop for humanity (Zhou et al. 2022). This grain is
consumed daily by half of the world's population, responding to 20% of global food energy, contributing
to food security (Rahman and Zhang 2022). It is widely consumed in Asia, Latin America, the Caribbean
and Africa (OECD-FAO 2024). In this scenario, Brazil is the 11" largest rice producer in the world, with
an annual production of 10.78 million tons (FAOSTAT 2022), being the third most produced grain
(CONAB 2024). Rice cultivation can be carried out in different systems, including flooded soils.
However, approximately 75% of global rice production occurs in flooded areas, promoting higher yield in
this cultivation system (Datta et al. 2017).

Flooded soils with low pH can suffer from iron (Fe) toxicity due to the low redox potential of the
soil, which favors the reduction of Fe** (ferric) to Fe** (ferrous). This reduction is intensified by microbial
and anaerobic activities, increasing Fe solubilization and, consequently, its availability in the root zone of
plants (Mahender et al. 2019). Excessive concentrations of Fe in rice fields cultivated in the flooded
system are a problem, as they cause toxicity, reducing crop productivity by 10% to 100%, depending on
the intensity (Mishra et al. 2022). Fe is an essential micronutrient for plant development. However, in
excess, it affects hormonal homeostasis, inhibits cell division, the growth of primary and lateral roots,
reduces plant height, panicle number, grain productivity, causing damage to tissue and foliar symptoms,
such as tanning (Aung and Masuda 2020).

Dopamine (DOP) belongs to the group of neurotransmitters classified as catecholamines, playing
important roles in regulating physiological processes and responding to biotic and abiotic stresses
(Tanveer and Shabala 2020; Raza et al. 2022). This molecule has the ability to minimize the effects of
nutritional deficiency in plants (Liang et al. 2017), as well as excess nutrients (Lan et al. 2020). In parallel, it
plays a crucial role in reducing heavy metal toxicity (Zhang et al. 2023; Prestes et al. 2025), salinity tolerance
(Jiao et al. 2019), and adaptation to water deficit (Gao et al. 2020; Pontes et al. 2024), flooding (Cao et
al. 2023a) and pathogen infections (Ji et al. 2022; Liu et al. 2022), working as a relevant antioxidant
against stresses in plants (Liu et al. 2020a; Ahammed and Li 2023).

In this context, rice plants subjected to Fe stress present reduced photosynthesis, deterioration of
photosynthetic pigments (Pinto et al. 2016; Miiller et al. 2017), increases in reactive oxygen species, lipid
peroxidation markers, and cell membrane damage (Wu et al. 2017; Onyango et al. 2020), and decreased
plant growth and biomass (Lubis et al. 2022). However, the exogenous application of DOP, has shown
promise in maintaining photosynthesis (Abdulmajeed et al. 2022; Wang et al. 2023), increasing the
activities of antioxidant enzymes (Yildirim et al. 2024), promoting nutrient uptake (Li et al. 2015), and
increases biomass in plants subjected to Fe stress (Farouk et al. 2023).

This research hypothesizes that excess Fe in flooded rice is one of the most significant abiotic
stresses in the cultivation system of this crop, negatively impacting the physiological processes, growth,
and yield (Ullah et al. 2023). In this sense, the exogenous application of DOP acts to minimize the most
diverse effects of stresses in plants (Liu et al. 2020b). The objective of this research was to investigate
whether the exogenous application of dopamine can mitigate oxidative damage to the photosynthetic
apparatus in rice leaves exposed to excess iron. In addition, we sought to evaluate changes in leaf
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structures, stomatal variables, production of reactive oxygen species (ROS), activity of antioxidant
enzymes, and nutritional status of plants.

Materials and Methods

Geographical location and growth parameters

The experiment was conducted in the Paragominas Campus of the Federal Rural University of Amazonia,
Paragominas, Brazil (2°55” S, 47°34” W). The research was performed in a greenhouse with regulated
temperature and humidity. The minimum, maximum, and median temperatures were 24.8 °C, 33.9 °C,
and 27.1 °C, respectively. The relative humidity throughout the trial period fluctuated between 60% and
80%.

Plant material and containers

Seedlings of O. sativa L. cv. Puita INTA CL™ with 10 old days were selected and placed in 700 mL pots
under hydroponic conditions. These seedlings were maintained with Hoagland e Arnon (1950) solution
from the 10% day after sowing, starting with 50% of the ionic force and changing to 100% after 6 days
(16" day).

Experimental design

The experiment consisted of four treatments, including two with Fe supply (250 and 5000 puM Fe,
representing control and excess conditions, in that order) and two concentrations of dopamine (0 and 50
puM DOP, called —DOP and +DOP, respectively).

Plant nutrition, DOP preparation, and Fe excess

Nutrients were available using a nutrient solution in agreement with Tadaiesky et al. (2020) during 24
days (16-40'" day). For DOP preparation, 50 pM DOP solution (NT, Sigma-Aldrich, USA) was prepared
according to the protocol described by Jiao et al. (2019). DOP was applied directly to the nutrient solution
for 20 days (day 20-40 after sowing). For Fe treatments, FeCl, was prepared at concentrations of 250 uM
(control, x1 Fe) and 5000 uM (excess, x20 Fe) and supplied for 10 days (30-40" day). Fe concentrations
were chosen according to Wang et al. (2015), using pH 5.5. On day 40 of the experiment, physiological
and morphological parameters were measured for all plants, and tissues were harvested for anatomical,

biochemical, and nutritional analyses.

Chlorophyll fluorescence and gaseous exchange

Chlorophyll fluorescence was assessed utilizing a modulated chlorophyll fluorometer (model OS5p; Opti-
Sciences), as outlined by Maia et al. (2018). Gas exchange was assessed with an infrared gas analyzer
(model LCPro*; ADC BioScientific), in accordance with the calibration protocols outlined by Pereira et
al. (2019).

Measurements of anatomical parameters
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Samples were collected from the middle region of the leaf limbs of fully expanded leaves of the third
node and roots 4 cm from the root apex. Subsequently, all collected botanical material was fixed in FAA
70 (Johansen 1940) for 24 hours and dehydrated in ethanol for embedding in methacrylate resin (Leica
Historesin, Nussloch/Heidelberg, Germany). Transverse sections with a thickness of 7 um were obtained
with a rotating microtome (model YD 315, American MasterTech Scientific), stained with toluidine blue,
pH 4.7 (O’ Brien and McCully 1981), and mounted onto slides with synthetic resin (Permount-Fischer).
For stomatal characterization, the epidermal impression method (Segatto et al. 2004). The slides were
observed and photomicrographed under an optical microscope (Primostar 3, Zeiss.) coupled to a digital
camera (Axiocam ERc 5s, Zeiss.). The images were analysed with Image-Pro Plus previously calibrated
with a micrometre slide from the manufacturer. The leaf anatomical parameters evaluated were epidermis
thickness from abaxial leaf side (ETAb), epidermis thickness from adaxial leaf side (ETAd) and
Chlorophyll parenchyma (CP). In the root samples, measurements of root epidermis thickness (RET), root
epidermis thickness (RDT), root endodermis thickness (RCT), vascular cylinder diameter (VCD), root
metaxylem diameter (RMD) were performed.

Assays of antioxidant enzymes, soluble proteins, and stress markers
Antioxidant enzymes (SOD, CAT, APX, and POX) and soluble proteins were isolated from leaf tissues

(Badawi et al. 2004). Quantification of total soluble proteins was conducted (Bradford 1976). SOD assay
was conducted at 560 nm (Giannopolitis and Ries 1977), and SOD activity was quantified in units per mg
of protein. CAT assay was measured at 240 nm (Havir and McHale 1987), with CAT activity quantified
as pmol H,O, mg™! protein min~'. The APX experiment was conducted at 290 nm (Nakano and Asada
1981), with APX activity quantified in umol AsA mg™! protein min~!. The POX assay was measured at
470 nm (Cakmak and Marschner 1992), with activity quantified in umol tetraguaiacol mg~! protein min™.
The concentration of O ; was quantified at 530 nm (Elstner and Heupel 1976). Stress markers, specifically
H,0; and MDA, were isolated (Wu et al. 2006). Hydrogen peroxide (H,0,) was quantified (Velikova et
al. 2000). The MDA concentration was calculated utilizing an attenuation value of 155 mM™! cm’!
(Cakmak and Horst 1991). EL was assessed following the methodology outlined by Gong et al. (1998)
and is computed using the formula EL (%) = (EC//EC>) x 100.

Assessment of photosynthetic pigments, nutritional composition, and biomass

Chlorophyll and carotenoid concentrations were assessed using 40 mg of foliar tissue. The samples were
homogenized in darkness using 8 mL of 90% methanol (Sigma-Aldrich™). The homogenate underwent
centrifugation at 6000 x g for 10 minutes at 5°C. The supernatant was discarded, and the concentrations
of chlorophyll a (Chl a), chlorophyll b (Chl b), carotenoids (Car), and total chlorophyll (total Chl) were
measured utilizing a spectrophotometer (model UV-M51; Bel Photonics) in accordance with the
technique defined by Lichtenthaler and Buschmann (2001). Samples (100 mg) of root and leaf tissues
were pre-digested in 50 mL conical tubes with 2 mL of sub-boiled HNOs. Subsequently, 8 ml of a
solution consisting of 4 ml of H>O, (30% v/v) and 4 ml of ultra-pure water was added and transferred to a
Teflon digestion tube (Paniz et al. 2018). Iron (Fe), calcium (Ca), magnesium (Mg), potassium (K),
copper (Cu), zinc (Zn) and molybdenum (Mo) were measured using an inductively coupled plasma mass
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spectrometer (model ICP-MS 7900; Agilent). The quantification of shoot and root development was
conducted by measuring constant dry weights (g) after desiccation in a forced-air oven at 65°C.

Data analysis

The normality of the residuals was assessed using the Shapiro—Wilk test. The data underwent one-way
ANOVA, and significant mean differences were assessed using the Scott—Knott test at a 5% probability
level (Steel et al. 2006). All statistical analyses employed software R™ (Venables et al. 2021).

Results

DOP decreased Fe concentrations in plants exposed to excess

Plants subjected to Fe excess reached high Fe concentrations in root and leaf tissues (Table 1). However,
DOP treatment provides significant reductions in Fe contents of 20% in root tissues and 36% in leaf
tissues, when compared to the excess Fe treatment without DOP.

Benefits linked to DOP for nutrient uptake

There were significant reductions in the macro and micronutrient contents in plants exposed to excess Fe
in the leaves and roots of rice plants (Table 2 and Fig. 7). However, the application of DOP contributed to
a significant increase in essential nutrients in the roots, such as Ca, Mg, K, Cu, Zn and Mo of 63%, 51%,
8%, 14%, 7% and 22% respectively, in relation to plants subjected to excess Fe without DOP. In the
leaves, there were also significant increases in Ca (39%), Mg (37%), K (32%), Cu (25%), Zn (12%) and
Mo (144%), compared to the excess Fe treatment without DOP.

Exogenous neurotransmitter promoted protection against Fe excess Fe on anatomical structures of roots
and leaves

Root structures decreased significantly in plants subjected to Fe excess (Table 3 and Figure 1). However,
plants exposed to Fe stress and treated with DOP had increases of 21%, 20%, 8%, 4% and 20% in RET,
RDT, RCT, VCD, RMD, in this order, when compared to the treatment of excess Fe + 0 uM DOP. In leaf
structures, excess Fe caused significant decreases (Table 3 and Figura 1). However, the application of
DOP provided increases in ETAd, ETAb and CP of 6%, 4% and 11%, respectively, in relation to the
treatment with excess Fe and in the absence of DOP.

DOP minimized oxidative damage in the photosynthetic apparatus

Fe excess caused reductions in photosynthetic pigments Chl a, Chl b, Total Chl, and Car, but increases in
Chl a/Chl b, Total/Car (Table 4). However, 50 uM of DOP in plants stressed by Fe promoted increases of
4%, 7%, 5% and 30% in Chl a, Chl b, Total Chl and Car, respectively, and a decrease of 2% and 19% in
Chl a/Chl b, Total/Car, in this order, when compared to equal treatment without DOP. In chlorophyll
fluorescence, plants under Fe stress had an increase in Fo and a reduction in F,, F, and F./Fp, (Fig. 2).
However, plants treated with 5000 uM Fe?" + 50 uM DOP had a decrease in Fy (2%) and an increases in
F, (6%), Fm (4%), and F\/Fm (2%), in relation to treatment with Fe excess and without DOP (Fig. 1). High
amount of Fe caused reductions in NPQ, EXC, and ETR/Px and increases in NPQ, EXC, and ETR/Px
(Table 4 and Fig. 7). However, plants under same treatment with application of 50 pM DOP obtained
increases of 13%, 11% and 13% in ®psi1, gp, and ETR, respectively, and reductions in NPQ, EXC, and
ETR/Px of 14%, 6% and 1%, in this order, compared to the treatment of Fe excess and absence of the
neurotransmitter. Gas exchange, Fe excess generated unfavorable impacts (Table 4 and Fig. 7). Plants
exposed to Fe stress when treated with DOP achieved increases in Py, WUE, and Pn/C; of 14%, 25% and
23% respectively, and reductions of 22%, 9%, 60 in C;, E, and g;, sequentially compared to plants treated
with 5000 uM Fe?* + 0 uM DOP.
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Contributions of DOP to antioxidant defense

Plants exposed to Fe excess presented increases in enzymatic activities (SOD, CAT, APX and POX) (Fig.

3 and Fig. 7). However, the application of 50 pM DOP in combination with Fe excess intensified the
activities of antioxidant enzymes, resulting in significant increases of 33%, 29%, 75% and 17% for SOD,

CAT, APX and POX, respectively, when compared to the same treatment without this neurotransmitter.

Under Fe toxicity, plants exhibited increases in stress markers (Fig. 4 and Fig. 7). However, the treatment
with 50 pM DOP to plants exposed to 5000 uM Fe caused reductions in O 3 H © ,MDA, and EL of
14%, 8%, 37% and 4%, in that order, concerning treatment 5000 uM Fe + 0 uM DOP.

DOP reduces the negative effects caused by Fe excess in biomass

Significant decreases in biomass of plants exposed to 5000 uM de Fe were detected (Fig. 5 and Fig. 6).
However, DOP utilization in plants impacted by Fe excess induced increments in SDM (6%), RDM (3%
and TDM (6%, in this order, comparing plants submitted to Fe excess without DOP.

Discussion

Fe excess in the soil solution causes accumulation of this element in both roots and leaves of rice
plants. In contrast, the DOP application (50 pM) minimizes Fe stress by reducing the levels of this metal
in these tissues, which highlights the role of DOP in mitigating the toxic damage caused by Fe excess.
DOP reduces Fe accumulation in rice plants, possibly by regulating the expression of genes related to
chelator extensions and transport, such as OsDMASI, OsYSL15, OsYSL2, and OsFRDLI, implementing
as a strategy to limit the absorption and excessive transport of Fe, contributing to the control of the
accumulation of this metal (Kabir et al. 2016; Wairich et al. 2024). The OsYSL2 gene, for example, acts in
the transport of Fe via the phloem (Ishimaru et al. 2010). Thus, the possible inhibition of the expression of
this gene in plants treated with DOP may have contributed to the lower concentration of Fe observed in
the leaves, compared to plants exposed only to Fe excess in our study. In agreement with our study, DOP
acts in the detoxification of toxic metals, such as chromium, as it decreases the absorption and transport
of this metal in roots and leaves of tomato plants through phytochelatins and elimination of ROS by the
action of antioxidant enzymes (Ahammed et al. 2025). In tobacco plants, the application of DOP
alleviates cadmium (Cd) toxicity, since there is an increase in Cd sequestration in the root cell wall and
changes in chemical forms within the cells, resulting in a significant reduction in the levels of this

element and a significant increase in Mn and Zn concentrations in the roots and leaves (Zhang et al.
2025).

Fe excess affects the absorption of essential minerals, resulting in a significant reduction in Ca,
Mg, K, Cu, Zn, and Mo. Fe interferes with nutrient absorption due to competition for transport (Rai et al.
2021). K*, Ca?*, and Mg?" ions compete for the same transport site as Fe, decreasing the absorption of
these nutrients when Fe is in excess. For micronutrients, in addition to competition between other divalent
cations, such as Zn**, the formation of Fe plaques can block access to micronutrients on the surface of rice
plants (Kirk et al. 2021). However, DOP treatment increases the levels of macro and micronutrients, due
to the fact that DOP favors ionic homeostasis (Dehghanian et al. 2024). This is reflected in the increases
in SDM, RDM and TDM found in this research, as plants absorb minerals more efficiently, such as Ca,
Mg, K, Cu, Zn, Mo that are essential for plant development and growth (Saleem et al. 2022).

In the leaves of soybean seedlings under saline stress, DOP pretreatment (100 uM and 200 uM)
leads to a decrease in the Na content in this tissue. In addition to the significant increase in the K and Ca
ions, compared to seedlings not treated with DOP (Abo-Shanab and Diab 2024). Similarly, in Malus
hupehensis under excess Na, the application of DOP (100 or 200 uM) positively influences the uptake of
K, N, P, S and Mn ions. In parallel, it reduces Na uptake, alleviating saline stress in plants (Li et al. 2015).

Fe excess causes damage to the anatomical structures of roots in rice plants. However, the
application of the neurotransmitter in plants stressed with Fe implies benefits for these regions. The
epidermis is the first tissue to come into contact with the soil, being responsible for regulating the entry of
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water and ions into the plant, as it performs a selective function. Furthermore, the epidermis immobilizes
some ions, such as Fe, reducing the content of this element in the internal tissues of the plant (De-Jests-
Garcia et al. 2020). The endodermis is located between the cortex and the vascular cylinder of the root,
being a layer that contains the Casparian strip, blocking the apoplastic flow and forcing the entry of ions
through the symplastic pathway, that is, inside the cells, allowing selectivity in the transport to the xylem
and the homeostasis of elements such as Fe (Chao and Chao 2025). The thickening of the cell walls of the
root epidermis and endodermis, especially through the accumulation of suberin and lignin, increases the
selectivity and barrier capacity of these layers, acting as protection in the absorption of ions (De-Jesus-
Garcia et al. 2020). In addition, the size and number of metaxylem vessels are related to the ability of a
root to transport water to the shoot (Reeger et al. 2021). Regarding leaf anatomy, DOP provides increases
in CP, ETAd and ETAb in stressed plants. Fe excess damages CP in rice leaves due to the high
susceptibility of these organelles to Fe toxicity, because chloroplasts located in leaf mesophyll tissues
represent the leading destination of Fe in plants, storing approximately 80 to 90% of the total of this
element into plant cells (Ahmed et al. 2023). CP facilitates CO: uptake in a leaf region where light is
abundant and photosynthetic rates are high, promoting photosynthesis (Borsuk et al. 2022). This behavior
is verified in this research, with significant increases in Pn. A similar result was found in study of Prestes
et al. (2025), in which treatment with DOP causes a significant increase in palisade and spongy
parenchyma (chlorophyll parenchyma) in tomato leaves intoxicated by Pb. Additionally, Fe toxicity is
associated with the collapse of abaxial and adaxial epidermal cells and mesophyll, which results in a
reduced thickness of the leaf blade (Miiller et al. 2015). This behavior is in agreement with the reductions
in SDM observed in our work, associated with the increase in ROS, MDA and EL, when plants are
exposed to excess Fe.

DOP stimulated the activities of antioxidant enzymes (SOD, CAT, APX, and POX) in rice plants
subjected to excess Fe, improving antioxidant defense and ROS elimination. The neurotransmitter
amplified the activity of SOD, being an enzyme that catalyzes the dismutation of O 5 to form H @ and
0,. Then, CAT, APX and POX act to eliminate H,O, (Rajput et al. 2021), clearly protecting the
chloroplast against oxidative stress. In line with the results of our investigation, DOP at concentrations of
100 to 200 uM stimulated the activities of CAT, APX in Cucumis sativus plants under excess nickel (Lan
et al. 2022). Zhang et al. (2023) found that there was an increase in SOD, POX and CAT activities in
Malus hupehensis plants treated with 100 uM DOP and subjected to cadmium toxicity, demonstrating that
DOP exogenous plays an important role in the elimination of ROS under stress caused by this metal.

Abiotic stresses intensify the production of ROS, causing oxidative damage to essential
components, such as lipids, nucleic acids, and proteins, as well as organelles, including the chloroplast
and mitochondria (Hasanuzzaman et al. 2020; Panda et al. 2024). In our research, the DOP application in
plants exposed to Fe excess decreased the concentration of ROS, such as O 3 and H Q , In parallel,
reductions in MDA (marker of lipid peroxidation) and EL (indicator of damage to cell membranes)
reduced the degradation of membrane lipids, revealing higher integrity of cell (Sachdev et al. 2021). In
agreement with our study, the concentrations of H,O; and O , significantly decreased by 20% and 21%,
respectively, in Malus hupehensis plants under cadmium toxicity (Cao et al. 2023b). Pontes et al. (2024),
when investigating the effects of DOP on soybean seedlings under water deficit, found that the
application of 100 uM DOP caused significant reductions in H,O,, O2, MDA, and EL.

Chloroplast pigments suffered reductions in response to stress caused by Fe. In chloroplasts, Fe
is fundamental for the functioning of the photosynthetic apparatus, composing the acceptors linked to
electron transport (PSII, PSI, cytochrome b6f complex and ferredoxins) and actively participating in the
formation of essential cofactors such as heme and Fe-S clusters (Kroh and Pilon 2020). However, Fe
accumulation in chloroplasts caused oxidative damage in chloroplasts, clearly linked to ROS
overproduction (Kim et al. 2021). However, DOP application induced increases in Chl a, Chl b, Total Chl
and Car. DOP contributed to protecting chloroplasts and reducing damage to the cell membrane, as
identified by the reductions in MDA and EL levels found in this research. In agreement with our work, M.
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hupehensis seedlings in hydroponic cultivation were subjected to alkaline stress and DOP utilization
resulting in an increase in Chl @, Chl b and, consequently, Total Chl (Jiao et al. 2019). Li et al. (2015)
studying the effects of salinity on M. hupehensis plants, detected that the addition of DOP to a nutrient
solution caused increases in the chloroplast pigments of this species, even under salinity stress.

Treatment under Fe stress and with DOP had increases in Fy, Fn, and F./Fy, revealing that the
neurotransmitter protected the PSII reaction center. Rice plants stressed with Fe (5000 pM) were
characterized by an elevation in Fo and reductions in Fy, Fn, and F,/Fn.. Behavior similar to our study
occurred in research by Tadaiesky et al., (2020). Fe excess induced potential deteriorative activity,
suggesting damage to reaction center from PSII (Xu et al. 2015). Application of 100 uM DOP increased
F./Fm in Malus hupehensis conditioned to low nitrogen supplementation (Liu et al. 2020c). A study with
Lemna turionifera, Wang et al. (2023) identified that treatment with DOP promoted increases in F,/Fy,
®pgpr, and qp, as also found in our research.

DOP induced increases in @psi, qp and ETR, being related to the positive effects on F,, Fr, and
F./Fm described previously in this study, because the increase in these parameters indicates greater
efficiency and activation of reaction centers, such as Q4 that is a molecule responsible for receiving and
transferring electrons between PSII and PSI) (Pereira et al. 2019). The decrease observed in NPQ, EXC
and ETR/Py indicates that DOP contributed to a more efficient use of electrons in photochemical activity,
stimulating energy absorption and electronic transport by PSII, therefore indirectly contributing to the
conversion of light energy captured into biochemical energy (Melo et al. 2022). Similar to our research,
the DOP treatment promoted increases in gp and ETR of pre-treated cucumber plants under nitrate stress
(Lan et al. 2020).

Rice plants under Fe stress and DOP application presented increases in Px, WUE and Pn/Ci,
these data are related to the increases in photosynthetic pigments (Chl a, Chl b, Total Chl and Car)
verified in this study. Increase in Pnx and reduction in C;i can be explained by the efficiency of the
RuBisCO enzyme, responsible for the carboxylation of CO» during the photosynthesis process (Pereira et
al. 2019). Decrease in E and gs indicate that there was a decrease in water loss during transpiration
process, being explained by the partial closure of the stomata, as well as water was used more efficiently,
in agreement with increases in WUE values (Pereira et al. 2014). According to the literature, Malus
domestica plants pre-treated with dopamine and exposed to drought, Py, and gs values were significantly
higher during time evaluated, comparing control treatment. In the early stages of the drought, C; values
were also higher compared to control plants, but showed lower values in the later stages of drought (Gao
et al. 2020). Application of 100 uM DOP significantly increased Px, gs and E of Cucumis sativus leaves
mildew-infected, while significantly reducing C; (Ji et al. 2022).

Reduced biomass in shoot and root were observed in rice plants subjected to Fe excess. This
stress causes ROS formation, resulting in cellular damage and impairing plant physiological processes,
such as gas exchange and water relations, which negatively impact the development of shoot and root
tissues (Dey et al. 2020). However, the DOP addition to stressed plants brought improvements in
biomass, more specifically SDM, RDM, and TDM. This occurs because DOP acts as an antioxidant,
contributing to reducing oxidative stress and improving the performance of the photosynthetic apparatus,
with benefits on photosynthesis. Thus, plants can produce more photoassimilates, alleviating metabolic
limitations and, consequently, favoring vegetative growth (Lan et al. 2020). The use of 100 Mm DOP
enhanced the resilience of Lactuca sativa seedlings, favoring their growth (Farouk et al. 2023).
Modulation of abiotic stress tolerance through antioxidant defense mechanisms directly influences the
viability of plant vegetative growth (Ahammed and Li 2023). Gao et al. (2020) observed that M.
domestica plants that received DOP treatment developed a higher biomass, compared to plants exposed to

saline stress.

Conclusion

Rice plants exposed to Fe excess present accumulation of this element and decreased nutrients in
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leaf and root tissues. However, DOP application alleviates the stress of this metal by reducing Fe in plant
tissues and increasing nutrients, such as calcium, magnesium, potassium, copper, zinc and molybdenum,
compared to the treatment with Fe excess alone. Regarding anatomical structures, DOP provides
increases in the structures of root and leaf, when compared to treatment with Fe excess and without DOP.
The stress caused by excess Fe in rice plants causes several damages to the photosynthetic apparatus.

However, DOP minimized the oxidative damage in the photosynthetic apparatus, promoting
increases in chloroplastic pigments. Parallelly, exogenous DOP induced increases in maximal quantum
yield of PSII photochemistry, effective quantum yield of PSII photochemistry and electron transport rate.
Regarding gas exchange parameters, the treatment with Fe excess and DOP presents increases in net
photosynthetic rate, water use efficiency, and instantaneous carboxylation efficiency, as well as
reductions in intercellular CO, concentration, transpiration rate, and stomatal conductance, when
compared to the treatment with excess Fe and DOP.

The exogenous application of DOP contributes to the antioxidant defense induced by Fe excess
by enhancing the activities of the antioxidant enzymes superoxide dismutase, catalase, ascorbate
peroxidase, and peroxidase. In parallel, it reduces ROS concentrations, as well as malondialdehyde and
electrolyte leakage. Plants exposed to Fe excess had significant reductions in biomass. In contrast, DOP
favors increases in stem dry matter, root dry matter, and total dry matter. Therefore, exogenous DOP is
a molecule capable of minimizing the effects caused by Fe excess in flooded soils in rice crops,
protecting the photosynthetic apparatus, promoting antioxidant defense, and stimulating the plant biomass
through the intensification of nutrient uptake.
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Fig. 1. Leaf and root cross sections in rice plants treated with DOP and exposed to Fe excess. Control Fe
/= DOP (A and B), Control Fe / + DOP (E and F), Excess Fe /— DOP (C and D), Excess Fe / + DOP (G
and H). Legends: RE = Root epidermis; RC = Root cortex; RD = Root endodermis; VC = Vascular
cylinder; RM = Root metaxylem; EAd = adaxial epidermis; EAb = Adaxial epidermis; CP = Chlorophyll
parenchyma. Bars (leaft) = 10 pm and bars (root) = 50 um.

45



480
M -por
400 | H +DoP

320

240 +

160

80

1500

1250

1000 | g

w750

500

250

o

a a
I I b [
D

Control

Control Excess

il

1698

1415

1132

849

566

283

1.0

0.0

F,IF

Fig. 2. Minimal fluorescence yield of the dark-adapted state (Fo), maximal fluorescence yield of the dark-

adapted state (Fn), variable fluorescence (Fy) and maximal quantum yield of PSII photochemistry (F./Fr)

in rice plants treated with dopamine and exposed to Fe excess. Bars with different letters indicate

significant differences from the Scott-Knott test (P<0.05). Bars corresponding to means from five

repetitions and standard deviations.
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indicate significant differences from the Scott-Knott test (P<0.05). Columns corresponding to means from

five repetitions and standard deviations.
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Fig. 4. Superoxide (Oj;), hydrogen peroxide (H © ), malondialdehyde (MDA) and electrolyte leakage
(EL) in rice plants treated with dopamine and Fe excess. Columns with different letters indicate

significant differences from the Scott-Knott test (P<0.05). Columns corresponding to means from five

repetitions and standard deviations.
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Fig. 5. Shoot dry matter (SDM), root dry matter (RDM) and total dry matter (TDM) in rice plants treated

with dopamine and Fe excess. Columns with different letters indicate significant differences from the

Scott-Knott test (P<0.05). Columns corresponding to means from five repetitions and standard deviations.
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Fig. 7. Graphical representation of the main results of the research associating the antioxidant system,

photosynthetic machinery and ionic balance in rice plants treated with dopamine and excess Fe
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Tables
Table 1. Fe contents in rice plants treated with dopamine and Fe excess.

Fe?* DOP  Feinroot (ug g DM™) Fe in shoot (ug g DM™)
Control _ 285.12+1.51¢c 95.86 £0.52b
Control + 341.85+4.15¢ 97.95+ 3.90b

Excess _ 2259.02 +55.26a 146.57+5.07a

Excess + 1816.14 £ 85.53b 93.70 £3.01b

Fe?" = Iron. Columns with different letters indicate significant differences from the Scott-Knott test (P<0.05). Values described corresponding to means from five

repetitions and standard deviations.
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Table 2. Nutrient contents in rice plants treated with dopamine and exposed to Fe excess.

Fe?* DOP Ca(mggDM™") Mg (mg g DM™) K (mg g DM) Cu (ug g DM Zn (ug g DM Mo (uggDM™)
Contents in root

Control 447 £0.14b 1.89 £ 0.23b 29.42 +1.22b 18.61+0.92b 48.57+£0.71b 14.41£0.43b
Control  + 5.07 £0.09a 2.60 +£0.10a 37.52+ 1.54a 25.40 +0.89a 59.79 £ 0.68a 1521+0.39a
Excess _ 1.71 £0.10d 0.80+0.07d 2431+1.37d 13.79£0.27d 42.11 £0.58d 11.23+0.48d
Excess + 2.79 £0.25¢ 1.21 £0.07¢ 26.30 £+ 1.09¢ 1571 £0.51c 45.06 + 1.16¢ 13.75 £ 0.40c
Contents in shoot

Control 16.20 £0.22a 4.99 £0.15b 26.30 £+ 1.09b 13.73 £ 0.85b 40.37 £ 1.49b 10.62+0.57a
Control ~ + 16.60 +0.25a 5.57+0.18a 38.81+0.57a 15.35+0.98a 42.67+£0.67a 11.47 £0.85a
Excess _ 5.42+0.35¢ 2.57+0.12d 18.27+0.43d 10.69 £0.71c 33.87+1.51d 3.19+1.60c
Excess + 7.53+£0.50b 3.52 £0.08¢c 24.03 £ 0.95¢ 13.41+£0.77b 37.90 £+ 1.40¢ 7.78 £0.68b

Ca = Calcium; Mg = Magnesium; K= Potassium; Cu = Copper; Zn = Zinc; Mo = Molybdenum. Columns with different letters indicate significant differences from the
Scott-Knott test (P<0.05). Values described corresponding to means from five repetitions and standard deviations.



Table 3. Structures of root and leaf in rice plants treated with dopamine and exposed to Fe excess.

Fe2+ DOP  RET (um) RDT (um) RCT (um) VCD (um) RMD (um)
Control  _ 16.98 +1.39b 10.17 £0.72b 225.13+9.76a 132.22 +4.82b 29.02 + 1.50b
Control + 2147+ 1.28a 11.68 + 0.68a 233.44 +£10.09a 148.73 +4.78a 31.25+2.67a
Excess  _ 11.69 +1.01d 8.28+0.81c¢ 177.41 +5.96b 123.66 +2.22b 22.48 +1.94¢
Excess + 14.16 £091c 9.90+0.15b 191.88 £ 15.16b 128.07+5.71b 27.00 + 1.34b
Fe2* DOP ETAd (um) ETAD (um) CP (um)

Control  _ 3.56 £ 0.50b 2.92+0.16b 32.22 +£2.46b

Control + 3.96+0.22a 3.55+0.22a 38.81 £ 0.56a

Excess  _ 3.14+0.17c 2.65+0.17b 27.65 + 1.73¢

Excess + 3.31+0.25¢ 2.77+0.16b 30.71 + 1.09b

RET = Root epidermis thickness; RDT = Root endodermis thickness; RCT = Root cortex thickness; VCD = Vascular cylinder diameter; RMD = Root metaxylem
diameter; ETAd = Epidermis thickness from adaxial leaf side; ETAb = Epidermis thickness from abaxial leaf side; CP = Chlorophyll parenchyma. Columns with different

letters indicate significant differences from the Scott-Knott test (P<0.05). Values described corresponding to means from five repetitions and standard deviations.



Table 4. Photosynthetic pigments, chlorophyll fluorescence and gas exchange in rice plants treated with dopamine and exposed to Fe excess.

Fez+
Control
Control

Excess
Excess

FeZ+

Control
Control

Excess
Excess

FeZ+
Control
Control

Excess

Excess

DOP

+

Chl a (mg g! FM)

10.51£0.78a
10.95+0.45a

9.69+0.11b
10.10 £ 0.08b
Dpsit

0.32+0.02a

0.34+0.03a

0.24+0.01c
0.28 £0.01b

Pn(umol m?2 s

11.13£0.94a
11.76 = 0.68a
7.30 + 0.36¢
8.34+0.07b

Chl b (mg g”! FM)

4.43+£0.22a
4.69+0.37a

3.88+0.09b
4.13+0.15b

qre
0.34+0.03a
0.39+£0.02a

0.25+0.10b
0.27 +0.02b

E (mmol m?2 s

2.65+0.12a
2.23+0.16b
2.77+0.15a
2.53+0.15a

Total Chl (mg g~! FM)

14.94 £ 0.88b
15.64 +0.31a
13.57+0.15d
14.24 +0.12¢
NPQ
0.35+0.02¢
0.31+0.02d

0.49 £ 0.03a
0.42 +0.02b

gs (molm? s

0.33+0.03a
0.21 +0.01c
0.28 +0.02b
0.11+0.01d

Car (mg g”' FM)

0.83+0.02a
0.86+0.02a

0.46 + 0.02¢
0.59 + 0.04b

ETR (umol m?2 s

47.63 +3.54a
50.27 £ 4.81a

3587+ 1.31¢
40.65 + 0.89b

C; (umol mol™)

293 +4b
277 + 16¢
317 +8a
296 + 14b

Ratio Chl a/Chl b

2.38+0.18a
2.35+0.25a

2.50 £ 0.06a
2.45+0.10a

EXC (umol m? s

0.57+0.04b
0.56 + 0.04b

0.67 £0.02a
0.63+£0.01a

WUE (umol mmol ™)

4.21+£0.29b
5.29+0.28a
2.64 +0.10d
3.31+0.20c

Ratio Total Chl/Car
18.00+ 0.97¢c
18.25+ 0.68¢

29.77 +1.58a
24.11 £ 1.80b
ETR/Pn

4.29 £ 0.34b
428 +0.32b

4,92 +0.32a
4.87+0.12a

Prn/Ci (pmol m™ 57! Pal)

0.038 +0.003b
0.043 + 0.002a
0.023+0.001d
0.028 = 0.001c¢

Chl @ = Chlorophyll a; Chl b = Chlorophyll b; Total chl = Total chlorophyll; Car = Carotenoids; ®psit = Effective quantum yield of PSII photochemistry; qp =
Photochemical quenching coefficient; NPQ = Nonphotochemical quenching; ETR = Electron transport rate; EXC = Relative energy excess at the PSII level; ETR/Px =
Ratio between the electron transport rate and net photosynthetic rate; Px = Net photosynthetic rate; £ = Transpiration rate; gs = Stomatal conductance; C; = Intercellular
CO; concentration; WUE = Water-use efficiency; Pn/C; = Carboxylation instantaneous efficiency. Columns with different letters indicate significant differences from the

Scott-Knott test (P<0.05). Values described corresponding to means from five repetitions and standard deviations.
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