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RESUMO

Este estudo avaliou as alteragdes no metabolismo do nitrogénio em dois hibridos de palma de
6leo (BRS Manicoré¢ e Tenera) submetidos ao estresse salino. O experimento foi conduzido em
casa de vegetacdo, com plantas expostas a concentragdes crescentes de NaCl (até 400 mmol
L™"). Foram analisados o status hidrico das plantas (potencial hidrico foliar na antemanha e
manha e contetdo relativo de dgua), atributos do substrato (pH, condutividade elétrica) e
compostos nitrogenados e osmorreguladores (nitrato, amonio, aminodcidos totais, prolina,
glicina betaina, proteinas soltveis, carboidratos). Os resultados demonstraram que o estresse
salino reduziu significativamente o potencial hidrico foliar na antemanha e manha nas plantas
salinizadas de ambos os hibridos, mas sem reducdo no contetdo relativo de 4gua, cuja média
geral foi em torno de 87% considerando todos os tratamentos, indicando ajustamento osmotico.
Em relacao ao controle, ambos os hibridos acumularam duas vezes mais aminoacidos totais ¢
prolina sob salinidade. O Tenera destacou-se pelo maior acimulo de nitrato (+20%) e glicina
betaina (+22%), enquanto o Manicoré¢ elevou proteinas soluveis totais (+125%) e sacarose
(+7%). Conclui-se que os hibridos empregaram estratégias metabodlicas distintas: o Tenera
prioriza osmolitos organicos (prolina, glicina betaina) para ajustamento osmotico rapido, € o
Manicor¢ investe em estabilidade proteica e carboidratos para tolerancia ao estresse. Essas
diferencas genotipicas oferecem subsidios para sele¢do de hibridos tolerantes a salinidade na

palma de dleo.

Palavras-chave: Estresse salino; Osmorregulacdo; Ajustamento osmotico; Compostos

nitrogenados.



ABSTRACT

This study evaluated the changes in nitrogen metabolism in two oil palm hybrids (BRS
Manicor¢ and Tenera) subjected to saline stress. The experiment was conducted in a
greenhouse, with plants exposed to increasing concentrations of NaCl (up to 400 mmol L™).
The plant water status (predawn and morning leaf water potential and relative water content),
substrate attributes (pH, electrical conductivity), and nitrogenous and osmoregulatory
compounds (nitrate, ammonium, total amino acids, proline, glycine betaine, soluble proteins,
carbohydrates) were analyzed. The results demonstrated that saline stress significantly reduced
the predawn and morning leaf water potential in the salinized plants of both hybrids, but without
a reduction in the relative water content, whose general average was around 87% considering
all treatments, indicating osmotic adjustment. In relation to the control, both hybrids
accumulated two times more total amino acids and proline under salinity. The Tenera hybrid
stood out for its greater accumulation of nitrate (+20%) and glycine betaine (+22%), while the
Manicoré hybrid elevated total soluble proteins (+125%) and sucrose (+7%). It is concluded
that the hybrids employed distinct metabolic strategies: Tenera prioritizes organic osmolytes
(proline, glycine betaine) for rapid osmotic adjustment, and Manicor¢ invests in protein stability
and carbohydrates for stress tolerance. These genotypic differences provide support for the

selection of salinity-tolerant hybrids in oil palm.

Keywords: nitrogen metabolism, osmoregulation, osmotic adjustment, salt stress
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1.1. CONTEXTUALIZACAO

A palma de 6leo (Elaeis guineensis Jacq.), palmeira perene da familia Arecaceae, ¢
originaria da Africa Ocidental tropical, estendendo-se do Golfo da Guiné até Angola.
Historicamente, desempenhou um papel crucial nas culturas e economias locais, fornecendo
0leo para alimentacdo, combustivel e rituais (BASIRON, 2007; CORLEY & TINKER, 2016).
Atualmente, a palma de 6leo ¢ uma das oleaginosas mais cultivadas globalmente, liderando a
produgdo e exportagdo mundial de 6leos vegetais devido a sua alta produtividade e a qualidade
do oleo (VILLELA et al., 2014).

Essa importancia econdmica impulsionou uma significativa expansdo das plantacoes,
especialmente no Sudeste Asidtico, a principal regido produtora. Contudo, essa expansio
frequentemente estd associada ao desmatamento e a conflitos sociais em importantes paises
produtores (BENEZOLI et al., 2021; BRANDAO & SCHONEVELD, 2015). No Brasil, o
cultivo concentra-se nos estados do Pard e Bahia, onde o Para, principal produtor nacional, a
area cultivada cresceu mais de 180% entre 2014 e 2024 (IBGE, 2024). Essa expansdo tem
potencial para influenciar o desenvolvimento regional, particularmente através da integracao
de agricultores familiares na cadeia produtiva (VILLELA et al., 2014; BENAMI et al., 2018;
NAHUM et al., 2020).

Para sustentar altas produtividades e a viabilidade econdmica, o cultivo da palma de 6leo
demanda manejo intensivo, especialmente em relacdo a nutri¢do, sendo uma cultura exigente
em nitrogénio (N), fosforo (P), potassio (K) e magnésio (Mg). O nitrogénio, especificamente,
¢ um macronutriente essencial, absorvido do solo predominantemente como amdnio (NHa"),
forma comum na Amazonia devido as condi¢des ambientais locais, e nitrato (NOs"). Ele ¢
assimilado e transportado na planta como aminoécidos e amidas, sendo fundamental para
diversas rotas metabolicas, incluindo a sintese de proteinas e 4cidos nucleicos (DAVIDSON et
al., 2007; DUFRENE & HORWITZ, 2000; JOURDAN & REY, 2012). A deficiéncia de
nitrogénio causa clorose foliar generalizada pela redugdo na sintese de clorofila, diminuindo a
fotossintese e comprometendo o crescimento, desenvolvimento e, consequentemente, a
producao (EPSTEIN & BLOOM, 2005; MARSCHNER, 2011; TAIZ & ZEIGER, 2015). Por
isso, a adubagdo nitrogenada, seja com materiais organicos ou fertilizantes quimicos, ¢ uma
pratica essencial, planejada com base nas caracteristicas do solo, fase da cultura e analises
nutricionais (EMBRAPA, 2020).

Entretanto, o proprio manejo intensivo, aliado a certas condi¢des ambientais, pode gerar

desafios. Um problema significativo € o estresse salino, que pode ocorrer em solos de regides
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costeiras, areas com altas precipitagdes ou sob irrigacdo, especialmente onde a drenagem ¢
inadequada, levando a concentragdo de sais na superficie ou no perfil do solo (RICHARDS,
1954; BORGES et al., 2016; FRANCO & ZIMPEL, 2020; SANTOS et al., 2022). Além disso,
o uso intensivo de fertilizantes com alta concentragdo de sais soluveis (cloretos, nitratos,
sulfatos) pode aumentar a condutividade elétrica do solo, exacerbando o problema
(MARSCHNER, 2011).

O estresse salino afeta adversamente o crescimento, desenvolvimento e produtividade da
palma de 6leo, interferindo diretamente no metabolismo do nitrogénio. A salinidade prejudica
a capacidade das raizes de absorver e transportar nutrientes, causa desequilibrios idnicos e
estresse osmotico (MUNNS & TESTER, 2008). Especificamente, a absor¢do de nitrato (NOs")
e amonio (NH4") € comprometida pela competi¢cdo com ions como cloreto (Cl7) e sédio (Na*),
que sao toxicos em altas concentracdoes (GRATTAN & GRIEVE, 1999).

As respostas das plantas ao estresse salino variam entre espécies e até mesmo entre
variedades ou cultivares. Estudos com trigo (7riticum aestivum) e tomate (Solanum
lycopersicum) mostraram que materiais tolerantes a salinidade conseguem manter maior
atividade da enzima nitrato redutase e maior eficiéncia na assimilacdo de nitrogénio em
comparagdo com as sensiveis (ZHANG & BLUMWALD, 2001; ARFAN et al., 2007). Isso
sugere que a selecdo de variedades ou hibridos mais tolerantes a salinidade e eficientes no uso
de nitrogénio ¢ uma estratégia promissora para mitigar os impactos negativos da salinidade na
agricultura (JULKOWSKA & TESTERINK, 2015; MUNNS & GILLIHAM, 2015).

Nesse contexto, a comparagao entre diferentes hibridos de palma de 6leo torna-se crucial
para identificar aqueles mais adaptados a ambientes salinos. Portanto, este trabalho objetiva
comparar as respostas fisioldgicas e bioquimicas associadas ao metabolismo do nitrogénio em
dois hibridos de palma de 6leo submetidos ao estresse salino, avaliando parametros como
potencial hidrico, acimulo de metabolitos nitrogenados e inferir a atividade de enzimas chave
desse metabolismo, visando contribuir para a selecdo de materiais mais resilientes e

sustentaveis para areas com problemas de salinidade.
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1.2. REVISAO DE LITERATURA
1.2.1. Palma de dleo

A palma de 6leo (Elaeis guineensis Jacq.), também conhecida como dendezeiro, ¢ uma
das culturas mais importantes para a produgio de 6leo vegetal no mundo. Originaria da Africa
Ocidental, a palma de 6leo se adaptou a diversas regides tropicais, incluindo o Brasil, onde ¢

amplamente cultivada no estado do Para (IBGE, 2023).

A palma de 6leo ¢ uma cultura perene, com um ciclo de exploragio de aproximadamente
25 anos, com a primeira colheita ocorrendo cerca de trés a quatro anos apos o plantio. A
producdo de 6leo atinge o pico entre sete e 18 anos de idade da planta. Durante esse periodo, a
planta proporciona boa cobertura do solo, ajudando a prevenir a erosdao, especialmente em
climas tropicais com chuvas torrenciais. A produtividade da cultura depende de varios fatores,
incluindo o tipo de solo, as condi¢des climaticas, o material vegetal e as praticas de manejo, a
alta produtividade e versatilidade de uso. Os hibridos Tenera e Manicoré tém ganhado destaque
devido as suas caracteristicas agrondmicas superiores e¢ potencial de sustentabilidade em
relagdo aos cultivares utilizados anteriormente (SILVA et al., 2016; CAMPELO et al., 2017;
SERGIEIEVA, 2022; GRUPO BBF, 2024).

No cultivo da palma de oleo, os hibridos contribuem significativamente para a
sustentabilidade da cultura, uma vez que combinam alta produtividade a resisténcia a doengas
e adaptacdo a diferentes condicdes edafoclimaticas. O hibrido Tenera ¢ o resultado do
cruzamento intraespecifico entre as variedades dura e pisifera, ¢ amplamente cultivado devido
a sua alta produtividade de 6leo, a qual ¢ atribuida a espessa camada de mesocarpo (CORLEY
& TINKER, 2016). Isso corresponde a um rendimento de 6leo superior em até¢ 30% em
comparagdo a outras variedades de palma de 6leo (SINGH et al., 2013). Além dessa maior
produtividade, os hibridos apresentam, em geral, uma maior resisténcia as doengas comuns a

cultura da palma de 6leo (KUSHAIRI et al., 2017).

O hibrido BRS Manicoré, por sua vez, ¢ um cruzamento interespecifico entre Elaeis
oleifera, também denominado caiaué, e Elaeis guineensis. Apresenta menor porte, o que facilita
o manejo e a colheita dos cachos, ¢ uma alta taxa de rendimento de dleo, embora sua
produtividade dependa de técnicas de polinizacdo assistida (COSME et al., 2015; BORGES et
al., 2016).
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1.2.2. Salinidade dos solos

A salinizag@o do solo ¢ um problema crescente em diversas regides do mundo, resultante
da acumulag¢@o de sais soliveis na camada superficial do solo que afeta a produtividade agricola
e a saude dos ecossistemas (SHRIVASTAVA & KUMAR, 2015). As causas desse fendmeno
estdo associadas a processos naturais e as atividades humanas, como praticas inadequadas de
irrigagdo, o desmatamento, uso excessivo de fertilizantes e residuos industriais os quais
contribuem para a salinizacdo do solo (QADIR et al., 2007, MUNNS & TESTER, 2008;
RENGASAMY, 2010; SHAHID et al., 2018).

A salinidade dos solos ¢ um desafio para a sustentabilidade agricola e ambiental e, por
esse motivo, entender esse processo ¢ fundamental para desenvolver estratégias eficazes de
mitigacdo e manejo dos sais no solo, principalmente nas lavouras permanentes (JESUS &
BORGES, 2020; VERDE, 2021; CHERLINKA, 2023; MELO, 2024).

Os efeitos da salinidade no solo e nas plantas sdo variados. As altas concentragdes de sais
no solo podem alterar a composi¢do microbiana do solo, prejudicar a absor¢do de agua e
nutrientes pelas plantas, resultando em crescimento atrofiado e reducdo da produtividade
(CORDEIRO, 2001). Em casos graves, a salinizagdo pode tornar o solo improprio para uso,
levando a degradagdo da terra e perda de areas agricolas (PEDROTTI et al., 2015).

A classificacao dos solos salinos baseia-se em parametros como a condutividade elétrica
do extrato do solo saturado (CE), que mede a concentragdo de sais e percentagem de sodio
trocavel (PST) (RICHARDS, 1954). Um solo ¢ considerado salino quando apresenta CE > 4,0
mS cm ! e PST < 15%. (CARVALHO et al., 2022).

No Brasil, cerca de 2% do territério brasileiro apresenta problemas de salinidade
(AMARAL et al., 1999), algumas regides apresentam esta caracteristica de salinidade tais como
em regides costeiras de influéncia marinha (praia e dunas) e de influéncia fluviomarinha
(manguezais), bem como algumas regides do semiarido (caatinga) no nordeste do pais e no
Pantanal (YOSHIOKA & LIMA, 2018).

Dessa forma, diversas estratégias t€ém sido desenvolvidas para mitigar os efeitos da
salinidade no solo, tais como planejamento correto da irrigagcdo, o que pode ajudar a reduzir o
acimulo de sais no solo; melhorias na drenagem do solo para evitar o encharcamento e o
acumulo de sais na zona radicular, e o uso adequado de corretivos para ajudar a deslocar os sais
do perfil do solo, melhorando sua estrutura e fertilidade (WILLADINO & CAMARA, 2010).
Além disso, a rotagdo de culturas e o uso de plantas tolerantes ao sal sdo praticas recomendadas

para manter a produtividade agricola em solos salinos (OLIVEIRA et al., 2010).
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1.2.3. Importiancia do metabolismo do nitrogénio em plantas

O metabolismo do nitrogénio ¢ um processo central no ciclo de vida das plantas,
influenciando diretamente seu crescimento, desenvolvimento e produtividade (TAIZ &
ZEIGER, 2015). O nitrogénio ¢ um componente crucial de aminoacidos, proteinas, dcidos
nucleicos e clorofila, sendo vital para a fotossintese e outros processos metabolicos
(MARSCHNER, 2011). Entretanto, o nitrogénio necessita ser assimilado pelas plantas em
formas reativas, como amoénio (NH4") e nitrato (NOs7), o que implica em uma série de
complexas reagdes bioquimicas. A eficiéncia com que diferentes espécies vegetais realizam
esse metabolismo tem implicagdes diretas na agricultura, especialmente em culturas de alto
rendimento como a palma de 6leo (EPSTEIN & BLOOM, 2005).

O metabolismo do nitrogénio nas palmeiras, especialmente na palma de 6leo, ¢ notavel
por seu sistema eficiente de absor¢ao e assimilagdo, crucial em ambientes tropicais onde os
nutrientes podem ser escassos. A palma de 6leo se destaca por sua capacidade de reciclar
internamente o nitrogénio, permitindo manter altos niveis de produtividade mesmo em
condi¢cdes de baixa disponibilidade de nutrientes (HIREL et al., 2007; MASCLAUX-
DAUBRESSE et al., 2010; FOSTER et al., 2014; BACHIEGA et al., 2020).

Essa eficiéncia ¢ vital ndo apenas para a produtividade, mas também para a
sustentabilidade das plantac¢des. Estudos indicam que a otimizagao da assimilagdo de nitrogénio
¢ fundamental para a producdo enquanto se minimizam os impactos ambientais associados ao
uso de fertilizantes (XU, 2024). Assim, compreender os mecanismos moleculares e fisiologicos
envolvidos nesse processo ¢ fundamental para melhorar praticas agricolas e promover a
sustentabilidade no cultivo da palma de 6leo (MURPHY, 2014; CORLEY & TINKER, 2016;
GOH et al., 2016; HENSON & CHANG, 2019).

A cultura da palma de 6leo requer adubacdo nitrogenada para suprir sua demanda
nutricional, além apresentar resposta ao aumento de produtividade a partir da quantidade de
adubacio aplicada (VIEGAS, 2000).

A utilizagao frequente de adubos no cultivo de dendé (Elaeis guineensis) estabelece uma
relacdo complexa com a sustentabilidade ambiental devido aos impactos associados ao uso
excessivo de fertilizantes. Pois o uso excessivo ou inadequado desse insumo pode, por exemplo,
levar a contaminagao de corpos hidricos, levando a eutrofizacdo e perda de biodiversidade
(SAVCI, 2012). Por outro lado, a pratica de adubacdo precisa, baseada em andlises de solo,

pode otimizar a absorc¢ao de nutrientes, reduzir perdas por lixiviagdo e volatilizagdo, e aumentar
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a produtividade em areas j& cultivadas, diminuindo a pressdo por expansao em novas areas

(GOH & HARDTER, 2003; SCHRODER et al., 2004; LUSKIN & POTTS, 2011).

1.2.4.Respostas de plantas ao estresse salino

Plantas submetidas a alta salinidade frequentemente exibem mudangas na estrutura
celular e alteragdes morfoldgicas, incluindo a reducdo do crescimento radicular e da parte aérea.
As raizes tendem a se tornarem mais curtas e espessas, enquanto as folhas podem apresentar
cloroses e necroses (ACOSTA-MOTOS et al., 2017). Estudos mostram que essas mudancas sao
uma resposta adaptativa para minimizar a absor¢ao de ions toxicos e conservar dgua nos tecidos
(ZHU, 2001). Além disso, a salinidade pode induzir a formagao de estruturas especializadas,
como tricomas ¢ glandulas de sal que ajudam na excrecdo de sais (RITTER et al., 2020;
VENANCIO et al., 2021).

A salinidade pode levar a uma redugdo do diametro dos vasos nas raizes, o que seria uma
adaptagdo morfoldgica para minimizar a perda de dgua. Em espécies haldfitas, como Suaeda
maritima, a presenga de osmolitos nas células foliares ajudam a manter a turgidez celular e a
funcionalidade fotossintética mesmo em condig¢des de alta salinidade (FLOWERS et al., 2010).
Em contraste, plantas glicofitas, que s3o menos tolerantes ao sal, apresentam uma reducao na
area foliar e no crescimento radicular como uma estratégia para reduzir a absor¢ao de ions
toxicos (WILLADINO & CAMARA, 2010). Em plantas de sabid (Mimosa caesalpiniifolia), a
salinidade elevada resultou em uma diminuicao significativa na altura das plantas, evidenciando
o impacto negativo do estresse salino no crescimento vegetativo (SILVA et al., 2009).

Especialmente nas membranas celulares e nos cloroplastos, estudos demonstraram que a
salinidade pode causar danos significativos as membranas dos tilacdides nos cloroplastos,
resultando em uma reducdo na eficiéncia fotossintética, além do comprimento e a densidade
das raizes tendem a diminuir em plantas expostas ao sal, devido a menor disponibilidade de
agua e ao acumulo de ions téxicos. Esse acimulo de ions nas células pode levar a
desorganizacdo estrutural, afetando a integridade das membranas celulares (ESTEVES &
SUZUKI, 2008; MARCONDES & GARCIA, 2009;).

O estresse salino também pode afetar a germinagdo e o crescimento inicial das plantas,
onde a exposicdo as altas concentragdes de ions no substrato resultam em uma germinacao
reduzida e em um crescimento inicial comprometido (HASEGAWA et al, 2000). Em relagdo ao
aspecto reprodutivo, o estresse salino também impacta diretamente a morfologia das flores,

frutos e sementes. Estudos demonstram que em muitas plantas, a produgado de flores e frutos ¢
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significativamente reduzida sob condicdes salinas, devido a redugdo da energia disponivel para
processos reprodutivos, ja que a planta precisa alocar mais recursos para mecanismos de defesa
e manuten¢do, onde a salinidade prejudica a fertilidade das flores e a qualidade das sementes
em varias culturas (MUNNS et al., 2016).

Em relacdo aos frutos de muitas espécies formados em condi¢cdes salinas, tem-se
observado que eles tém menores tamanhos e apresentam sementes menos viaveis em relagao
aos frutos produzidos pelas plantas ndo salinizadas (ZHU, 2001). Algumas plantas,
desenvolvem mecanismos naturais para tolerar altos niveis de salinidade no solo, como a
compartimentagdo de ions toxicos nos vacuolos e a sintese de osmolitos. Além de, possibilitar
modificagdes genéticas para o desenvolvimento de plantas com genes que conferem maior
resisténcia ao estresse salino, abrindo novas perspectivas (FLOWERS & COLMER, 2008;
ROY et al., 2014; HAMAMOTO et al., 2015).

As plantas submetidas ao estresse salino passam por uma série de alteragdes fisiologicas
e adaptativas para sobreviver e se desenvolver nessas condi¢des adversas. O excesso de sais no
solo, afeta diretamente o potencial hidrico do solo, dificultando a absor¢ao de agua pelas raizes.
Essa reducdo no potencial hidrico pode levar ao estresse hidrico, mesmo que haja agua
disponivel no solo, comprometendo o crescimento ¢ o metabolismo da planta (MUNNS &
TESTER, 2008). Além disso, a acumulagao de ions toxicos, como sodio (Na*) e cloro (CI), no
interior das células vegetais pode interferir no funcionamento de enzimas e na integridade das
membranas celulares, causando desequilibrios i6nicos e prejudicando processos metabodlicos
essenciais (HASEGAWA et al., 2000).

Para lidar com a toxicidade i6nica, as plantas desenvolvem mecanismos de adaptacgdo,
como a compartimentalizagdo de ions toxicos no vacuolo, reduzindo sua concentracdo no
citoplasma e minimizando os danos celulares. Esse processo ¢ mediado por transportadores de
membrana, como as bombas de protons e os transportadores de Na*/H*, que ajudam a manter o
equilibrio i6nico (BLUMWALD, 2000). Além disso, as plantas podem acumular solutos
compativeis, como prolina, glicina betaina e agucares, que atuam como osmoprotetores,
estabilizando proteinas e membranas celulares sob condigdes de estresse (ASHRAF &
FOOLAD, 2007).

Podem também apresentar alteragdes morfologicas e anatdmicas em resposta ao estresse
salino. Por exemplo, o crescimento radicular pode ser inibido, enquanto a alocagdo de recursos
para o desenvolvimento de raizes laterais pode aumentar, permitindo uma maior exploragao do

solo em busca de dgua e nutrientes (DEINLEIN et al., 2014). Em nivel foliar, a reducao na area
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foliar e o espessamento da cuticula sdo comuns, visando minimizar a perda de agua por
transpiracao (PARIDA & DAS, 2005).

Plantas submetidas a estresse salino, frequentemente, ajustam seu potencial osmotico para
manter a absor¢do de agua. Este ajuste ¢ alcangado através da acumulagdo de solutos
compativeis, como prolina e glicina-betaina, que ajudam a manter a turgidez celular sem
interferir nas fungdes metabodlicas. (GOMES, 2011; RODRIGUES, 2018).

Nesse contexto, as plantas respondem ao estresse salino por meio de uma combinagdo de
mecanismos fisiologicos, bioquimicos e morfologicos, que visam manter a homeostase celular
e garantir a sobrevivéncia em condi¢des adversas. Essas adaptagdes incluem a regulacao do
balango i6nico, a sintese de metabolitos e modificacdes estruturais que ajudam a reduzir os

efeitos negativos do excesso de sais.

1.2.5. Alteragdes no metabolismo do nitrogénio em plantas sob estresse salino

O estresse salino pode afetar a produtividade das plantas, impactando diretamente
processos fisioldgicos e bioquimicos cruciais, em especial o metabolismo do nitrogénio. Em
ambientes salinos, a disponibilidade de nitrogénio e a eficiéncia de sua assimilagcao podem ser
significativamente comprometidos, levando a uma reducgao na sintese de compostos essenciais
como aminodcidos e proteinas (FLOWERS, 2004; PARIDA & DAS, 2005; MUNNS &
TESTER, 2008). As plantas, ao enfrentarem condi¢des salinas, precisam ajustar seu
metabolismo para manter o equilibrio osmotico e a homeostase idnica, o que frequentemente
resulta em alteragdes na assimilagdo e utilizagdo do nitrogénio (HASEGAWA et al., 2000;
ASHRAF, 2004).

Em palmeiras, o impacto do estresse salino no metabolismo do nitrogénio ¢ uma area de
crescente interesse devido a expansao das plantagdes para regides costeiras, onde a salinidade
do solo pode ser um desafio significativo. Estudos indicam que a palma de 6leo apresenta
mecanismos adaptativos que permitem certa resiliéncia ao estresse salino, como a modulacao
da atividade de enzimas-chave no metabolismo do nitrogénio, como a redutase do nitrato e a
glutamina sintetase. Esses ajustes enzimaticos sao criticos para a manuten¢ao da eficiéncia do
uso de nitrogénio, mesmo sob condi¢des adversas de salinidade (LEA & AZEVEDO, 2006;
KRONZUCKER et al., 2013; CORLEY & TINKER, 2016).

A tolerancia ao estresse salino em palmeiras estd frequentemente associada a sua
capacidade de acumular solutos compativeis, como prolina e betaina, que ajudam a estabilizar
proteinas e membranas celulares, além de contribuir para a osmorregulacao. Na palma de 6leo,

essas respostas sao complementadas por modificagdes na absorcao e transporte de nitrogénio,
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que sdo frequentemente regulados por sinais hormonais e de estresse oxidativo. Esses
mecanismos sao essenciais para mitigar os efeitos negativos da salinidade e garantir a
sustentabilidade da produgao de 6leo em areas afetadas pelo sal. (HASEGAWA ET AL., 2000;
ZHU, 2002; ASHRAF & FOOLAD, 2007; SHABALA & MUNNS, 2012).

Pesquisas tém focado em estratégias de manejo e melhoramento genético para aumentar
a tolerancia ao estresse salino na palma de 6leo, buscando cultivares com maior resiliéncia e
eficiéncia no uso de nitrogénio em condigdes salinas. A aplicacdao de técnicas biotecnologicas,
tem potencial para desenvolver plantas que possam prosperar em solos salinos, garantindo a
produtividade e a expansdo sustentdvel das plantagdes. Essas inovagdes sdo criticas para
enfrentar os desafios da salinizag¢@o do solo e manter a viabilidade econdmica da palma de dleo
em um cenario de mudancas climaticas globais (TESTER & DAVENPORT, 2003; FLOWERS
et al., 2010; MURPHY, 2014; GOH ET AL., 2016).
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2. INFLUENCIA DA SALINIDADE NO METABOLISMO DO NITROGENIO EM
HIBRIDOS DE PALMA DE OLEO (Elaeis guineensis)

2.1. INTRODUCAO

A palma de oOleo (Elaeis guineensis Jacq.) ¢ uma das culturas oleaginosas mais
importantes do mundo, destacando-se pela alta produtividade de o6leo por hectare em
comparagdo com outras culturas oleaginosas (CORLEY & TINKER, 2016). Sua importancia
econdmica esta relacionada a qualidade do 6leo extraido de seus frutos, que ¢ amplamente
utilizado para fins alimentares, industriais ¢ na producdo de biocombustiveis (BASIRON,

2007).

A crescente demanda mundial por 6leo de palma tem impulsionado a expansdo das
lavouras para diferentes regides, principalmente tropicais e subtropicais, onde a salinizagdo dos
solos, agravada pelas mudangas climaticas e praticas agricolas inadequadas, impde sérias
restrigdes ao crescimento e produtividade da espécie (NEGRAO, 2017; CHE RADZIAH, 2020;
FAO, 2022). Dessa forma, a dendeicultura vem enfrentando desafios relacionados a condigdes
ambientais adversas, como o estresse salino, que pode comprometer significativamente o
crescimento, desenvolvimento e produtividade das plantas (MUNNS & TESTER, 2008).

O estresse salino ¢ um dos principais fatores abidticos que afetam a agricultura em regides
tropicais e subtropicais, onde a palma de dleo ¢ geralmente cultivada. A salinidade interfere nos
processos fisioldgicos essenciais, como a fotossintese, o balanco hidrico e a absor¢do de
nutrientes, além de causar danos as estruturas celulares por meio do acimulo de ions nas folhas
(PARIDA & DAS, 2005; FLOWERS et al., 2010). Tais alteragdes resultam em desequilibrio
10nico e estresse osmotico, causando danos as células vegetais. Essas respostas ao estresse
salino comprometem processos como o metabolismo geral da planta, impactando diretamente
sua produtividade (FLOWERS & COLMER, 2008; VIEIRA, 2020; FERREIRA, 2021).

A eficiéncia do metabolismo do nitrogénio pode alterar significativamente o
desenvolvimento das plantas, uma vez que este nutriente ¢ um componente crucial para
aminoacidos, acidos nucleicos, hormonios vegetais e clorofila, influenciando diretamente a
fotossintese, o crescimento vegetativo e a producdo de biomassa (MARSCHNER, 2011). Sob
condigdes de estresse salino, a absor¢do e assimilagdo do nitrogénio podem ser afetadas,
comprometendo a sintese de compostos nitrogenados e, por consequéncia, o desenvolvimento

da planta (ASHRAF & HARRIS, 2004).
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A compreensao da resposta do metabolismo do nitrogénio ao estresse salino € crucial para
o desenvolvimento de estratégias que visem mitigar os efeitos negativos da salinidade na cultura
da palma de oleo. A investiga¢ao da regulacao de enzimas como redutase do nitrato, redutase
nitrito, glutamina sintetase (GS) e glutamato sintase (GOGAT) em hibridos de palma de 6leo
submetidos a salinidade pode fornecer informagdes valiosas sobre mecanismos regulatorios e
adaptacdes metabolicas (TAIZ & ZEIGER, 2015).

A cultura da palma de 6leo depende de um manejo equilibrado de fertilizantes e agua para
evitar a salinizacdo do solo, que pode ser agravada pelo uso excessivo de fertilizantes
combinado com praticas inadequadas de irrigacdo ou dependéncia de precipitacdo irregular. O
acumulo de sais no solo, decorrente da ma lixiviagdo durante periodos secos ou da irrigacdao
mal dimensionada, pode comprometer a absor¢do de nutrientes ¢ o desenvolvimento das
plantas, afetando diretamente a fotossintese e a produgdo de biomassa (FAIRHURST &
HARDTER, 2003). Além disso, a salinidade interfere no metabolismo do nitrogénio, reduzindo
a atividade de enzimas como nitrato redutase e glutamina sintetase, essenciais para a sintese de
compostos nitrogenados, como aminoacidos e clorofila, impactando o crescimento e a
produtividade da cultura (XU et al., 2012; TAIZ & ZEIGER, 2015). Portanto, praticas de
manejo equilibradas e adequadas de aplicagdo de fertilizantes e irrigagdo sdo fundamentais para
evitar a degradagdo do solo e garantir a sustentabilidade da palma de 6leo (RHEBERGEN et
al., 2018).

Em condig¢des de salinidade, o metabolismo do nitrogénio (N) sofre diversas alteracdes.
A salinidade reduz a disponibilidade de agua, o que afeta diretamente a absor¢ao de nutrientes,
incluindo nitrogénio (MARQUES, 2009). Além disso, a concentra¢do de ions de sodio (Na*) e
cloreto (CI') nos tecidos aumenta, atingindo niveis toxicos que prejudicam a fungao celular. Em
resposta ao estresse salino, as plantas acumulam solutos organicos de baixo peso molecular,
como prolina e aminoacidos soluveis, para ajustar a osmolaridade celular e manter a
turgescéncia. Essas mudangas refletem um forte desequilibrio i6nico que impacta o
metabolismo geral de nitrogénio (MORALIS et al., 2007).

Com o agravamento dos problemas de salinidade em areas produtoras, a busca por
cultivares mais tolerantes a condigdes salinas tem se intensificado, visando garantir a
sustentabilidade da produ¢do agricola. Estudos em outras espécies vegetais demonstram que
diferentes cultivares ou variedades de uma mesma espécie podem apresentar respostas distintas
a salinidade (BARCELOS, 2015; ZHU, 2016). A hibridagdo, por exemplo, tem se mostrado
uma estratégia eficaz no melhoramento genético para o desenvolvimento de cultivares

resistentes a estresses abioticos, como a salinidade, com hibridos de E. guineensis apresentando
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variabilidade genética que pode ser explorada para selecdo de gendtipos mais tolerantes
(PERRIN, 2008; SOLEIMANI, 2020).

No entanto, os mecanismos morfofisiologicos que conferem essa tolerancia, como
alteragdes no crescimento e acumulo de solutos osmoticos, ainda ndo sdo completamente
compreendidos, especialmente em relacdo a interacdo entre fatores genéticos e ambientais
(JANTASURIYARAT, 2005; SAMBANTHAMURTHI, 2009; SHABALA & MUNNS, 2017).
Estudos tém se concentrado na identificacdo de mecanismos morfofisioldgicos que permitem
as plantas tolerarem condi¢des salinas, incluindo alteragdes no crescimento e acumulo de
solutos osmoticos. A compreensdo desses mecanismos € essencial para o desenvolvimento de
estratégias de manejo que minimizem os impactos negativos do estresse salino, além de
possibilitar a selecdo de gendtipos mais adaptados a essas condi¢cdes (ZHU, 2016; DARLAN,
2018).

Neste contexto, o presente estudo tem como objetivo analisar a intensidade das alteragdes
no metabolismo do nitrogénio em dois hibridos de palma de 6leo submetidos ao estresse salino.
Parte-se da hipotese de que os hibridos apresentam diferengas expressivas em seus mecanismos
de adaptacao, refletidas em ajustes fisioldgicos e bioquimicos relacionados ao ajustamento
osmotico e a variagao nos teores de nitrogénio € compostos nitrogenados nas folhas. Com base
nos resultados, busca-se identificar os mecanismos de tolerancia a salinidade presentes nos
hibridos avaliados, fornecendo informagdes relevantes para programas de melhoramento

genético e para estratégias de manejo da cultura em areas afetadas pela salinidade.

2.2. MATERIAL E METODOS

2.2.1. Material vegetal e delineamento experimental

O trabalho foi desenvolvido em casa de vegetacdo, na Universidade Federal Rural da
Amazonia, Belém-PA (01°27'11.1" S e 48°26'34.4" W). Mudas de palma de 6leo (Elaeis
guineensis Jacq.), dos hibridos Tenera (variedade Deli x Gana, oriundas da Costa Rica,
fornecidas pela empresa ASD) e BRS Manicoré (fornecidas pela EMBRAPA), ambas com 12
meses de idade, foram aclimatadas por 60 dias na casa de vegetacdo e posteriormente
transplantadas para vasos de 30 L (35 cm de altura x 25 cm de didmetro da base x 35 cm de
didmetro do topo), preenchidos com mistura de solo e composto organico formado a partir da
mistura de material vegetal triturado na proporcao de 2:1 (v/v). A fertilizacdo das mudas foi
realizada pela aplicacdo de 10 g de Forth Coqueiro (12% N, 5% P, 18% K, 4% Mg; 8% S, 2%
Ca; 0,08% B, 0,05% Cu, 0,22% Fe, 0,10% Mn, 0,005% Mo, 0,20% Zn; Forth Jardim LTDA.,
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Sao Paulo, Brasil) por vaso a cada 20 dias. Fertilizagdes foliares semanais foram realizadas pela
aplica¢io de uma solugio de Forth Jardim SmL L™! (8% N, 3% P»0s, 8% K»0, 0,2% B, 1% Ca,
0,08% Cu, 0,1% Fe, 1% Mg, 0,2% Mn, 0,05% Mo, 0,4% Zn, 6% CO; Forth Jardim LTDA.,
Sao Paulo, Brasil). A irrigacdo das plantas foi realizada diariamente para retornar o solo a

capacidade de campo (KLAR et al., 1966).

Apds 120 dias do transplantio das mudas aos vasos, oito plantas de cada hibrido mais
uniformes em morfologia de parte aérea foram selecionados para a instalacdo do experimento.
Essas plantas apresentaram, em média aproximadamente, 7 folhas expandidas; 158 foliolos; 2

folhas flechas; 29 cm de altura e 64 mm de didmetro de coleto.

O experimento foi instalado em delineamento inteiramente casualizado, combinando-se
os dois hibridos de palma de 6leo a duas condi¢des de salinidade do solo (auséncia, controle; e
presenga de NaCl). Assim, um total de quatro tratamentos foram instalados conforme a Tabela

1.

Tabela 1 — Descri¢cdo dos tratamentos utilizados no experimento.

Tratamento Descri¢cao

MC Hibrido BRS Manicor¢ sem aplicacdo de solucdo salina (controle)
MS Hibrido BRS Manicor¢ + solu¢do salina (estresse salino)

TC Hibrido Tenera sem aplicacao de solu¢do salina (controle)

TS Hibrido Tenera + solucdo salina (estresse salino)

2.2.2. Inducio dos tratamentos

As plantas do tratamento controle, dos dois hibridos, foram irrigadas diariamente pela
manha e ao final da tarde com 4gua deionizada, inicialmente com 2000 mL e posteriormente
com o volume aproximado de 500 mL para repor a evapotranspiragdo das plantas segundo o
método gravimétrico (KLAR et al. 1966). As plantas referentes ao tratamento de salinidade
também foram irrigadas duas vezes ao dia, pelo mesmo método de reposi¢ao hidrica para
retornar o solo a capacidade de campo. Porém, no tratamento de salinidade, a primeira irrigagao
do dia, entre 8 e 9 h, era realizada com solugao salina preparada com NaCl em adgua deionizada.
A concentragdo da solu¢do salina foi gradativamente aumentada para evitar choques osmoticos

nas plantas. Assim, o esquema de aplicag@o da solugdo salina ocorreu da seguinte forma:
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e 2 dias com NaCl 25 mmol L (CE=2.32mS cm™)
e 2 dias com NaCl 50 mmol L (CE=4.78 mS cm™)
e 2 dias com NaCl 75 mmol L (CE=7.15mS cm™)
e 3 dias com NaCl 100 mmol L (CE=10.31mS cm ™)

e 10 dias com NaC1 200 mmol L' (CE = 14.64 mS cm™)
e 18 dias com NaCl 400 mmol L' (CE =28.98 mS cm™)

As concentragdes utilizadas foram estabelecidas com base na literatura cientifica, o que
possibilita a comparagao dos resultados obtidos com um amplo conjunto de estudos prévios. O
NaCl foi escolhido para induzir o estresse salino neste estudo devido a sua predominancia em
solos salinizados e a sua capacidade de simular os efeitos toxicos dos ions Na* e Cl-, principais
responsaveis pela toxicidade i6nica em plantas. Além disso, o uso de NaCl permite um controle
preciso das condigdes experimentais, por se tratar de um sal simples, amplamente disponivel,
de baixo custo e facil manipulagdo. Essas caracteristicas tornam sua utilizagdo acessivel a
maioria dos laboratorios e instituicdes de pesquisa, além de facilitar a comparagao com os dados
de um vasto corpo de literatura cientifica. No entanto, reconhece-se que solos naturais podem
conter uma variedade de outros sais, ¢ estudos futuros poderdo investigar a interacao entre

diferentes ions, visando uma compreensao mais abrangente dos efeitos do estresse salino.

2.2.3. Avaliacao do status hidrico

A avaliagao dos tratamentos foi realizada ap6s 18 dias da irrigacao das plantas com NaCl
400 mmol L', quando a condutividade elétrica do solo nos tratamentos de estresse salino foi
significativamente maior que nos solos ndo salinizados (tratamento controle). Nesse dia de
avaliacdo, foliolos do terco médio da terceira folha contada a partir do dpice foram amostrados
para as determinagdes de potencial hidrico foliar na antemanha (Wam), a qual foi realizada entre
4 ¢ 5 h. Em seguida, entre 8 ¢ 10 h, amostras de foliolos adjacentes da mesma folha foram
coletados para a determinacao do potencial hidrico durante a manha (Wm) e seu conteudo
relativo de dgua (CRAm) correspondente. As determinagdes de potencial hidrico foram
realizadas utilizando-se uma camara de pressao do tipo Scholander (m670, Pms Instrument Co.,
Albany, EUA) com adaptag¢des da metodologia original conforme descritas em Pinheiro et al.

(2008). Para a determinagdo do CRA, 20 discos de 6 mm? por foliolo foram coletados e
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imediatamente pesados para determinacdo da massa fresca (MF), os discos foram incubados
em agua destilada por 24 h para posterior determinacdo de sua massa de turgida (MT).
Posteriormente, as amostras foram secas em estufa de ventilacao for¢ada de ar a 72 °C até massa
constante, registrando-se a sua massa seca (MS), o CRA, foi calculado segundo (SMART &
BINGHAM, 1974), utilizando-se a formula abaixo, em que os resultados foram expressos em

porcentagem (%).

MF — MS
cRa = (

~\MT = MS) * 100

Amostras de foliolos da mesma folha foram coletados, imediatamente congelados em
nitrogénio liquido e mantidos a -20 °C até¢ as andlises. No mesmo dia de avaliacdo, amostras
dos substratos foram coletadas e acondicionadas em potes de polietileno e mantidos em
ambiente de laboratorio (26 °C) para posterior analise dos teores de sais (Na®, Cl" e K') e demais

atributos fisico-quimicos.

2.2.4. Condutividade elétrica (CE) e pH dos substratos

Para determinar a condutividade elétrica (CE) do substrato e o pH, foi preparado a solucao
de solo em agua deionizada na propor¢ao de 1:1 (v/v). Assim, amostras de 20 g do substrato
foram combinadas a 20 g de 4gua deionizada e misturadas vigorosamente. Em seguida, as
amostras foram deixadas em repouso por 60 min a temperatura ambiente (26 °C). Apos a
precipitacdo do substrato, o pH e a CE da solucao foram determinados através da utilizagao do
analisador portatil GroLine - HI99301 (Hanna Instruments, S3o Paulo, Brasil) (SILVA et al.,
2020).

2.2.5. Analises bioquimicas

2.2.5.1. Nitrato

Amostras foliares de 100 mg (MF) foram maceradas em 5,0 mL H>O deionizada,
extraidas em banho-maria a 100 °C por 30 min, e centrifugados a 3000 rpm por 10 min. O

processo foi repetido no precipitado e os extratos coletados foram combinados em tubo
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graduado para o volume final 10 mL. Na etapa analitica, 100 pL do extrato foram misturados a
200 pL de acido salicilico 5%, com posterior agitagdo e adicao de 4700 uL de NaOH 2N. As
absorbancias foram obtidas a 410 nm em espectrofotdmetro, utilizando como branco uma
mistura de 4gua deionizada e reagentes. A concentragdo de NO3™ foi determinada a partir de

curva padrio de NO;~ e resultados foram expressos em pmol kg ! MS (CATALDO et al, 1975).

2.2.5.2. Aménio (NH4"), aminoacidos totais, prolina e carboidratos soliveis totais

Esses compostos foram analisados a partir do mesmo extrato foliar. Para isso, amostras
foliares de 200 mg MF foram maceradas em 5 mL de dgua destilada sob gelo e depois incubadas
por 30 min a 100 °C. Apds resfriamento em gelo até temperatura ambiente, as amostras foram
centrifugadas por 10 min a 10.000 rpm. O sobrenadante foi coletado € 0 amonio determinado
imediatamente, enquanto fracdes do mesmo sobrenadante foram congeladas a —20 °C para
posteriores analises de aminoacidos totais, prolina e carboidratos soltveis totais (CST).

Para a determina¢do de amonio, aliquotas de 400 mL foram misturadas a 2,5 mL da
solugcdo A (5 g de fenol + 0,025 g de nitroprussiato de sodio em 500 mL de 4gua deionizada).
Apos agitagdo vigorosa em vortex, foram acrescentados 2,5 mL da solugdo B (2,5 g de NaOH
+ 12,6 mL de hipoclorito de sodio em 500 mL de dgua deionizada). Apds nova agitacdo em
vortex, a mistura foi incubada por 20 min a 37 °C. A absorbancia das amostras foi obtida a 625
nm utilizando-se um espectrofotdmetro UV-Visivel (K37-UVVIS, Kasvi, Parand, Brasil). As
concentragdes de amonio nas amostras foram determinadas com base em uma curva padrao de
amonio (NH4)2SOy4 e os resultados foram expressos em mg g ! MS (WEATHERBURN, 1967).

A determinagao dos aminodcidos totais (AAT) foi realizada em aliquotas de 100 uL do
extrato, misturadas a 400 pL de dgua destilada, 250 pL de tampdo citrato 200 mmol L' (pH
5,0) e 250 pL de ninhidrina acida. As amostras foram misturadas em vortex e incubadas a 100
°C por 15 min. A reacao foi interrompida em banho de gelo. Entao, 1,5 mL de etanol 50% (v/v)
foi adicionado por amostra e apos agitacdo e repouso por 20 min a temperatura ambiente as
absorbancias foram obtidas a 570 nm. Os teores de aminoacidos totais, eXpressos em expressos
em pmol g~! MS, foram determinados a partir de curva padrio de glutamina (PEOPLES, 1989).

Para a determinacao de prolina, aliquotas de 1 mL do sobrenadante foram misturadas
vigorosamente a 1,0 mL de ninhidrina acida e 1,0 mL de acido acético glacial e posteriormente
incubadas por 60 min a 100 °C. A reagdo foi paralisada em banho de gelo e a cada uma delas
foram adicionados 2,0 mL de tolueno. As amostras foram agitadas em voértex por 20 s e apds

atingirem a temperatura ambiente, foi realizada a determinagao de suas absorbancias a 520 nm.
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As concentragdes de prolina foram determinadas a partir da curva-padrao com L-prolina e os
resultados foram expressos em pmol g ! MS (BATES et al.,1973).

Para as analises de CST, 50 uL de extrato foram misturados a 450 pL de d4gua deionizada
e 500 pL de fenol 5% utilizando-se um voértex. Em seguida, foram adicionados 2 mL de acido
sulfurico concentrado de maneira uniforme, com posterior agitagdo em vortex. Apos 20 min, as
absorbancias das amostras foram obtidas a 490 nm. A concentragdo de CST foi calculada a

partir de curva padrio de glicose e os resultados expressos em mg g! MS (DUBOIS, 1956).

2.2.5.3. Glicina Betaina

A extragdo da glicina betaina (GB) foi realizada a partir da adi¢cdo de 25 mg MF de folhas
em 2 mL de agua destilada sob agitagdao por 4 horas a 25 °C. Em seguida, as amostras foram
centrifugadas a 10.000 rpm por 10 min a 25 °C. Em seguida, 250 pL do extrato aquoso foi
misturado a 250 pL de H>SO4 2N (dilui¢do da amostra 1:2) e, apds 1 h sob banho de gelo (na
geladeira), foram adicionados 200 pL de KI-I; gelado. Apds incubag@o por 16 h em banho de
gelo (na geladeira), as amostras foram centrifugadas por 15 min a 10.000 rpm por 0 °C. O
sobrenadante foi descartado e o precipitado foi lavado 2 vezes com 2 mL de HoSO4 1N gelado.
Uma nova centrifugagao foi realizada (10.000 rpm por 5 min a 0 °C) para eliminar todo residuo
de H2SO4 IN. O precipitado obtido foi dissolvido em 3 mL de 1,2-dicloroetano por meio de
vortex. Apos 2,5 h de reagdo a temperatura ambiente (26 °C), as absorbancias das amostras
foram obtidas a 365 nm. Para os calculos, uma curva padrao de glicina betaina foi preparada e
os resultados foram expressos em pmol de glicina betaina g ' MS (GRIEVE & GRATTAN,
1983).

2.2.5.4. Proteinas soluveis totais

Amostras foliares de 100 mg MF foram maceradas em 2,0 mL de tampao fosfato de
potassio 200 mmol L' (pH 6,7) e centrifugadas a 10.000 rpm por 10 min. O sobrenadante foi
coletado e as proteinas soluveis totais (PST) foram determinadas pelo método de Bradford

(BRADFORD, 1976) utilizando-se curva padrao de caseina.
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2.2.5.5. Sacarose

Amostras de 50 mg MF foram homogeneizadas em 1,5 mL de solugdo de MCW
(metanol:cloroférmio:agua, 12:5:3 v/v/v), incubadas sob agitagao constante por 30 min a 30 °C
e centrifugadas a 10.000 rpm por 10 min. O sobrenadante foi coletado e o residuo submetido a
uma segunda extragdo com igual volume de MCW. O novo sobrenadante foi juntado ao
primeiro e, para cada 2,0 mL do extrato combinado, foram adicionados 0,5 mL de cloroférmio
e 750 pL de dgua deionizada. A mistura foi agitada e centrifugada a 2.000 rpm por 10 min para
separacao de fases, sendo a fracdo aquosa metanolica (fase superior) coletada com pipeta de
Pasteur e transferida para tubos de ensaio. Para eliminagdo de cloroférmio residual, as amostras
foram mantidas em banho maria a 35 °C por 30 min. Para quantificacdo de sacarose, aliquotas
de 100 pL da fase aquosa metandlica foram misturadas a 100 uL de KOH 30% e hidrolisadas
a 100 °C por 10 min. Apos resfriamento, foram adicionados 3,0 mL de solucao de antrona 0,2%
em H>SOs4, seguindo-se de incubagdo a 40 °C por 20 min. As amostras foram resfriadas em
banho de gelo, agitadas vigorosamente por 10 s e a absorbancia determinada a 620 nm. Os

calculos foram realizados conforme curva padrao de sacarose (VAN HANDEL, 1968).

2.2.6. Analises estatisticas

Os dados referentes as analises ja realizadas foram submetidas aos testes de normalidade
e homogeneidade das variancias pelos testes de Shapiro-Wilk e Barlett, respectivamente.
Posteriormente, foi realizada analise de variancia considerando-se o delineamento inteiramente
casualizado formado pela combinagdo dos dois hibridos e duas condigdes de salinidade no
substrato. Quando pertinente, as médias dos tratamentos foram comparadas pelo teste de
Duncan (p<0,05). Os procedimentos estatisticos foram realizados utilizando o software R

(RStudio - v. 2025.05.1+513, R Core Team, 2025).

3. RESULTADOS

3.1.  Significancia Estatistica: Teste f

Os coeficientes do teste F e respectivas significancias sdo apresentados na Tabela 2. Foi
observado efeito significativo da salinidade (S) no Wam € no Wm, sem diferengas entre hibridos
(H) e interagdo entre hibridos e salinidade (H % S). Em contraste, o CRA ndo diferiu

significativamente entre H, Se H x S.
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Para o nitrato, o teste F foi significativo para os efeitos de H, S e H x S; enquanto os
teores de amodnio foram influenciados significativamente apenas paraa H X S. Os AAT e prolina
foram influenciados significativamente apenas para o efeito da S, o que pode indicar uma
ativacao de rotas associadas a sintese de aminoacidos em resposta ao estresse.

Um comportamento similar foi observado entre GB, sacarose e PST. Nesse caso, todas
essas variaveis foram significativamente influenciadas pelos efeitos isolados de H, S e da
interagao H x S. Contudo, os teores de CST nao variaram em fun¢ao dos H, S e interagoes.

Os dados revelam que a salinidade do substrato exerce um efeito preponderante sobre
variaveis hidricas e bioquimicas da palma de 6leo, com destaque para alteragdes nos potenciais
hidricos, acimulo de aminoacidos e solutos compativeis. Além disso, certas respostas sao
dependentes do gendtipo, evidenciando a existéncia de variabilidade genética quanto a
tolerancia ao estresse salino, o que ¢ fundamental para o melhoramento voltado a selecao de

hibridos mais adaptados a ambientes salinos.

Tabela 2 - Teste F para os efeitos isolados dos hibridos (H), das condi¢des de salinidade do

substrato (S) e das intera¢des hibridos x substrato (H x S).

Variavel H S HxS
Wam 4.651 " 7.933 2.35m
Yo 2.232m 1.910 8.427™
CRA 0.303 ™ 0.903 ™ 0.205 ™
Nitrato 9.717 " 14.022 12.344 "
Amdnio 0.036 ™ 0.399 ™ 5.909 *
AAT 0.566 "™ 70.412 7 0.0092 "
Prolina 2.943 0 24177 8.681™
GB 5.178° 26.187 7.784 "
Sacarose 61.809 *** 10.901 ° 8.101 "
CST 0.094 " 0.303 ™ 0.430 ™
PST 46.054 " 50.253 7 5.305°

ns = nao significante, *p<0.05, **p<0.01, ***p<0.001
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3.2. Alteragdes no pH e condutividade elétrica do substrato

O pH do substrato variou entre 6,17 (controle) e 6,23 (estresse salino) para o hibrido
Manicor¢ e entre 6,46 (controle) e 6,16 (estresse salino) para o Tenera (Tabela 3). A CE nos
substratos dos tratamentos controle foram similares para os dois hibridos, com valores entre
0,53 ¢ 0,62 mS cm ! (Tabela 3). Nos tratamentos de salinidade, a CE dos substratos aumentou
significativamente em relagdo aos tratamentos controle, com valores entre 15,96 mS cm™!

(Manicoré) e 16,80 mS cm™' (Tenera) (Tabela 3).

Tabela 3 - pH e condutividade elétrica (CE) dos substratos ndo salinizados (Controle) e
salinizados (Sal) no dia da avaliagdo comparativa dos tratamentos.

Hibrido Tratamento do substrato pH CE (mS cm™)

Manicoré Controle 6,17 £0,02 Ab* 0,53 £0,04 Ab
Sal 6,23 £ 0,02 Aa 15,96 £ 0,48 Aa

Tenera Controle 6,46 £ 0,03 Aa 0,62 + 0,06 Ab
Sal 6,16 0,01 Bb 16,80 £ 0,38 Aa

*QOs dados sdo a média + EP (n=4). Letras maitsculas diferentes denotam diferengas entre médias dos diferentes
hibridos comparados sob mesma concentragdo de sal (controle ou sal). Letras mintsculas diferentes denotam
diferencas entre plantas ndo salinizadas (controle) e salinizadas (sal) para cada hibrido separadamente. As
comparagoes de médias foram realizadas pelo teste de Duncan (p<0.05)

3.3.  Status hidrico do substrato e das plantas

Foi observado que 0 Wam para as plantas controles foram de — 0,1 MPa para ambos os
hibridos, enquanto para as plantas submetidas a solugdo salina apresentaram valores médios de
-1,57 MPa nos dois hibridos (Figura 1). O ¥y, foi similar entre plantas controle dos dois
hibridos, com valores médios em torno de -1,38 MPa. Nas plantas salinizadas, o ¥, também
foi similar entre os hibridos, entretanto, as médias foram significativamente menores em relagao
as plantas controle, com média de -2,30 MPa. As plantas controles e salinizadas apresentaram
dos dois hibridos apresentaram valores similares de CRA na manha, com valores médios em

torno de 87%.
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Figura 1 - Alteragdes no potencial hidrico foliar na antemanha (W.m) em A, B - potencial hidrico foliar
na manha (W) e em C - contetido relativo de agua (CRA) em dois hibridos de palma de 6leo (Manicoré
e Tenera) na auséncia (Controle) e presenca de cloreto de s6dio (NaCl) no substrato. Os dados sdo a
média + EP (n=4). Letras maiusculas diferentes denotam diferengas entre médias dos diferentes hibridos
comparados sob os diferentes tratamentos. Letras minusculas diferentes denotam diferengas entre
plantas controles e induzidas a presenca do cloreto de sodio (NaCl) para cada hibrido separadamente.
As comparagdes de médias foram realizadas pelo teste de Duncan (p<0.05).

3.4. Concentracoes de solutos nitrogenados, inorganicos e organicos, relacionados ao

ajustamento osmotico e teores foliares de proteinas soluveis totais.

O hibrido Tenera apresentou alteracdo significativa para todos os compostos avaliados
quando comparado ao hibrido Manicoré, que apresentou estabilidade em algumas varidveis
(Figura 2). Verificou-se que para os teores de nitrato (Figura 2A), os valores dos diferentes
tratamentos se mantiveram estaveis para o hibrido Manicoré¢, j& para Tenera houve um aumento
de mais de 20% para o tratamento induzido de salinidade.

As médias de amonio livre foram similares entre hibridos e condi¢des de salinidade,
indicando que esta forma de nitrogénio foliar, estatisticamente, ndo ¢ influenciada pela
salinidade (Figura 2B). Comparando os dois hibridos, foi observado que os teores foliares de

aminoacidos totais (AAT) foram similares entre as plantas controle e entre as plantas salinizadas
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(Figura 2C), sendo praticamente duas vezes maiores nas plantas salinizadas que nas plantas

controle (Figura 2C).
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Figura 2 - Altera¢des nos teores foliares de nitrato (NOs), aménio (NH4") e compostos organicos em
dois hibridos de palma de 6leo (Manicoré e Tenera) na auséncia (Controle) e presenca de NaCl (Sal) no
substrato. Os dados sdo a média + EP (n=4). Letras maitsculas diferentes denotam diferengas entre
médias dos diferentes hibridos comparados sob mesma concentracdo de sal (controle ou sal). Letras
minusculas diferentes denotam diferengas entre plantas ndo salinizadas (controle) e salinizadas (sal) para
cada hibrido separadamente. As comparagdes de médias foram realizadas pelo teste de Duncan (p<0.05).
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Seguindo o padrdo dos teores de AAT, o conteudo de prolina foi similar entre os
tratamentos aplicados para os dois hibridos (Figura 2D). Onde o teor foliar de prolina nas
plantas salinizadas dos dois hibridos foi praticamente duas vezes maior que nas respectivas
plantas controle, o que indica que esse aminoacido € significativamente sintetizado e acumulado
nas folhas (Figura 2D). Na variavel Glicina Betaina (GB) (Figura 2E), para o hibrido Tenera,
houve um acréscimo de 22% para as plantas induzidas as condicdes salinas e de 6,6% para o

hibrido Manicoré.

O teor de Proteinas Soluveis Totais (PST) nas plantas controle e salinizadas do hibrido
Tenera foram respectivamente 121,83% e 26,54%, sendo significativamente maiores que no
hibrido Manicoré (Figura 3A). Avaliando-se o efeito da salinidade em cada hibrido
independentemente, foi observado que o teor de PST nas plantas salinizadas do Manicor¢ foi
125,34% maior em relagdo as plantas controle, enquanto no Tenera este aumento foi da ordem
de apenas 28,66% (Figura 3A). Isso sugere que a exposicao ao sal resultou em um aumento dos

valores de PST em ambas as variedades, sendo o impacto mais expressivo em Manicor€.
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Figura 3 - Alteracdes nos teores foliares proteinas soltveis totais (PST) em dois hibridos de palma de
6leo (Manicoré e Tenera) na auséncia (Controle) e presenga de NaCl (Sal) no substrato. Os dados séo a
média + EP (n=4). Letras maiusculas diferentes denotam diferencas entre médias dos diferentes hibridos
comparados sob mesma concentragdo de sal (controle ou sal). Letras minusculas diferentes denotam
diferencas entre plantas ndo salinizadas (controle) e salinizadas (sal) para cada hibrido separadamente.
As comparagdes de médias foram realizadas pelo teste de Duncan (p<0.05).
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3.5. Concentracoes de carboidratos, relacionados ao ajustamento osmotico.

Os teores foliares de CST foram similares entre hibridos nas duas condi¢des de salinidade
avaliadas (Figura 4A). Nesse caso, a média global de CST para as plantas avaliadas foi de 91,33
mg g ' MS.

J& os teores de sacarose (Figura 4B), o hibrido Manicoré¢ apresenta um aumento de 7%
para a condi¢do de salinidade em relagdo ao controle, ja o hibrido Tenera ndo apresentou

variagdo com valores médios de 1,16 umol g™! MS em ambos os tratamentos.
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Figura 4 - Alteracdes nos teores foliares de carboidratos soluveis totais (CST) e sacarose em dois
hibridos de palma de 6leo (Manicoré e Tenera) na auséncia (Controle) e presenca de NaCl (Sal) no
substrato. Os dados sdo a média + EP (n=4). Letras maitsculas diferentes denotam diferengas entre
médias dos diferentes hibridos comparados sob mesma concentracdo de sal (controle ou sal). Letras
minusculas diferentes denotam diferengas entre plantas ndo salinizadas (controle) e salinizadas (sal) para
cada hibrido separadamente. As comparagdes de médias foram realizadas pelo teste de Duncan (p<0.05).

4. DISCUSSAO

4.1. Salinidade do substrato, status hidrico do solo e das plantas

Os resultados obtidos confirmam a eficdcia da metodologia para induzir o estresse salino
do solo, o que pode ser evidenciado pelo aumento da CE do substrato dos tratamentos
salinizados em relag@o ao controle. Nesse caso, os solos do tratamento salinizado apresentaram
valores de CE superiores a 4 mS cm™!, o que caracteriza solos salinos e restritivos para algumas
culturas (STAVI et al., 2021), limitando significativamente o desenvolvimento e crescimento
vegetal (SHRIVASTAVA & KUMAR, 2014). A manuten¢do do pH do substrato entre plantas

salinizadas e ndo salinizadas indica que as respostas fisiologicas e bioquimicas observadas neste
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trabalho sdo devidas ao estresse salino ¢ ndo devem ter tido influéncia de alteragdes na dinamica
de absor¢ao de nutrientes pela planta a qual ¢ influenciada pelo pH do substrato (ATTA et al.,
2023).

O acumulo de sais no solo diminui o seu potencial osmético e consequentemente diminui
o seu potencial hidrico. Portanto, solos salinizados devem ter potencial hidrico menor que solos
nao salinizados e isto pode levar as plantas a desidratagdo. Em experimentos com clones de
Eucalyptus spp. e feijao-caupi (Vigna unguiculata), redugdes no Wam foram utilizadas como
validador da indugdo do estresse salino (SOUZA et al., 2011, LACERDA, 2016), visto que o
potencial hidrico medido na planta na antemanha ¢ uma medida do potencial hidrico do solo,
dado o equilibrio hidrico entre planta e solo e a desprezivel taxa de transpiragdo foliar nesse
horario (VIEIRA et al., 2013, KOBAYASHI et al., 2008). Entdo, para comprovar a efetividade
dos tratamentos salinos neste trabalho, o Wam foi avaliado e os resultados indicaram que
reducdes significativas nessa variavel nas plantas salinizadas de ambos os hibridos.

A redugdo nos valores de Wam € Wm ¢ uma resposta esperada ao estresse osmotico
causado pela salinidade (SCHOSSLER et al., 2012, SANTOS et al., 2022). Com o aumento da
CE do substrato e a reducdo de seu Wsolo, @ planta tende a diminuir seu potencial hidrico foliar
para manter um gradiente de absor¢do de agua, pois 0 movimento da 4gua na planta ocorre do
maior para o menor potencial hidrico (CORREIA & MITTAL, 2014, DIAS, 2016). Em Bursera
fagaroides, Parkinsonia aculeata, Prosopis laevigata e Atriplex canescens, o potencial hidrico
varia significativamente entre os diferentes Orgdos vegetais, estabelecendo um gradiente
osmoético essencial para o transporte de agua e solutos (GONZALES et al., 2021). Gradiente
osmotico, induzido pelo acumulo de solutos organicos e inorganicos nas células vegetais em
resposta a alta salinidade do substrato, redireciona o metabolismo vegetal para sintese de
compostos osmorreguladores (AHMED, 2022).

As redugdes Wam € W observadas nas plantas estressadas dos dois hibridos de palma de
6leo neste trabalho seguem o padrdo reportado na literatura. Entretanto, o CRA das plantas
estressadas ndo diferiu das plantas controle em ambos os hibridos e este resultado indica que
um possivel ajustamento osmotico foi induzido nas plantas salinizadas, similarmente ao que foi
observado em plantas salinizadas de outras espécies (HNILICKOVA et al., 2017,
WILLADINO & CAMARA, 2010). Em Canavalia obtusifolia, Guapira pernambucensis,
Jacquinia brasiliensis e Eucalyptus spp., houve um incremento de solutos osmorreguladores e
este aumento foi relacionado a atenuagao dos efeitos do estresse salino no CRA (KUKI, 1997,
LACERDA, 2016). Solutos como amino 4cidos e agticares servem como osmolitos para aliviar

os efeitos adversos do estresse salino nas plantas (SINGH et al., 2022, LIU et al., 2024)
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Tomando-se os dados de Wam, ¥m € CRA, pode se inferir sobre a ocorréncia de
ajustamento osmotico em ambos os hibridos e que esse ajustamento osmotico ocorreu em

magnitude similar.

4.2. Concentracoes de solutos nitrogenados, inorganicos e organicos, relacionados ao

ajustamento osmotico.

O comportamento diferencial nos teores de NOs™ pode estar relacionado a diversos
mecanismos fisiolégicos em resposta ao estresse salino, em que o acimulo de nitrato em
condigdes salinas pode resultar da reducao da atividade da enzima nitrato redutase, que ¢
frequentemente inibida pela salinidade, como ocorre em Oryza sativa (FERNANDES et al.,
2022) e Vigna unguiculata (ARAGAO et al., 2011). O nitrato pode atuar tanto como nutriente
quanto como osmotico compativel durante periodos de estresse salino (VIEIRA et al., 2020).
As diferentes respostas entre os hibridos sugerem variacdes genotipicas na capacidade de
regular a homeostase de nitrato sob estresse salino.

Os niveis similares de NH4" entre os hibridos e condi¢des de salinidade representa um
aspecto crucial do metabolismo nitrogenado sob estresse, sugerindo que o ciclo GS/GOGAT
estd operando normalmente nas plantas salinizadas. A GS ¢ responsavel pela incorporagdo do
amonio em glutamina, enquanto a GOGAT converte glutamina e a-cetoglutarato em glutamato,
mantendo assim o amonio em formas orginicas ndo toxicas. (FORTUNATO et al., 2023). A
metaboliza¢cdo do amdnio ¢ importante devido a sua toxidez, a qual pode resultar em prejuizos
a capacidade fotossintética e crescimento da planta (SONG et al., 2022). Portanto, a possivel
manuten¢do do ciclo GS/GOGAT nas plantas salinizadas de palma de 6leo neste experimento
teria a funcao de evitar os efeitos toxicos associados ao excesso de amonio livre nas células,
como ocorre em Salicornia europaea, cultura reconhecida por sua tolerancia a salinidade (MA
et al., 2020). Similar manutencao das atividades de enzimas do ciclo GS/GOGAT foi observada
em plantas de Glycine max tolerantes ao estresse salino (ZILLI et al., 2008).

O aumento expressivo nos teores AAT observados nas plantas salinizadas neste trabalho
podem ter sido decorrentes tanto do aumento da degradagdo proteica quanto da sintese de novo
de AAT pelas rotas de sintese de amino acidos (BATISTA-SILVA et al., 2019). Frequentemente,
o estresse salino promove a proteoélise, levando ao acimulo de amino 4cidos livres como prolina
e glicina betaina (SINGH et al., 2022; SHEN et al., 2025). Similar comportamento foi
observado em plantas de Medicago sativa e M. truncatura, cujos teores de AAT aumentaram

sob salinidade e paralelamente a modulagdo de genes relacionados aos aminoacidos,
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culminando em uma melhor resposta a salinidade (FOUGERE et al., 1991, PENA CALZADA
etal., 2022). Aumentos nos teores de AAT foram também observados em plantas salinizadas de
Jatropha curcas (SILVA et al., 2009).

As plantas salinizadas dos dois hibridos apresentaram aumentos significativos nos teores
foliares de prolina, indicando que esse amino 4cido ¢ um osmolito compativel que deve
contribuir para uma melhor resposta a salinidade nesta espécie em face de sua capacidade de
estabilizar e proteger as células, além de atuar como osmorregulador (WANG et al., 2015;
HMIDI et al., 2018). Similar resultado foi observado em Glycine max (YAN et al., 2025) e em
cultivares de Oryza sativa, em que variagdes nos teores de prolina foram observadas a medida
que a concentragdo de sal foi aumentada (LIMA et al., 2004). A eficiéncia na sintese de prolina
tem sido relacionada a uma maior capacidade de tolerancia das plantas ao estresse salino € o
aumento na concentragdo desse amino acido tem sido considerado um indicador bioquimico
relevante de tolerancia a estresses abioticos, inclusive a salinidade (HAYAT et al., 2012, EL
MOUKHTARI et al., 2020).

A variacao nos teores foliares de GB entre os hibridos evidencia mecanismos distintos na
capacidade de sintese e acimulo desta importante molécula protetora. A GB atua mantendo o
equilibrio osmotico, estabilizando proteinas e membranas, e protegendo o aparelho
fotossintético sob condicdes de estresse (HU et al., 2012). A capacidade de acumular GB entre
os hibridos pode estar relacionada a diferencas genéticas na expressdao de enzimas envolvidas
em sua biossintese (GIRI, 2011). Plantas de Zea mays que acumularam GB conferiram
vantagem adaptativa em ambientes salinos, melhorando a homeostase i6nica e a estabilidade
das estruturas celulares (ZHU et al., 2022). Esta diferenga pode explicar parcialmente as
variagdes na tolerancia ao estresse salino entre os genotipos estudados.

Os teores foliares de PST nas plantas sob estresse salino foram maiores em relagcdo as
plantas controle e esta resposta pode estar relacionada a necessidade de indugdo de proteinas
relacionadas a tolerancia ao estresse (ATHAR et al., 2022). As PST que se acumulam durante
o estresse salino exercem diferentes fungdes essenciais, tais como na osmorregulagdo, protecao
de membranas e enzimas e na manutencao da homeostase celular (HE et al., 2021, MANSOUR
& HASSAN, 2022). Similarmente, incrementos nos teores de PST com o aumento da salinidade
foram observados em Lactuca sativa e Eruca sativa, (COSTA, 2024), Capsicum annuum

(TAFFOUO et al., 2017) e Saccharum officinarum (PASSAMANI, 2015).
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4.3. Concentracoes de carboidratos, relacionados ao ajustamento osmatico

Os teores foliares de CST mantiveram-se inalterados entre plantas salinizadas e controle
de ambos os hibridos. Os CST destacam-se como um dos principais grupos de solutos
envolvidos no ajustamento osmotico durante situagdes de estresse, atuando como reserva
energética e, alguns deles, como osmorreguladores celulares (SANEOKA et al., 1995, SIMOES
et al., 2020, CHAVES-FILHO & STACCIARINI-SERAPHIN, 2001). Diferentemente do que
foi observado neste trabalho, algumas espécies, quando submetidas a salinidade, apresentam
um maior acumulo de CST, como em Sorghum bicolor (OLIVEIRA et al., 2006, LOBO et al.,
2011) e em trigo (HUSSAIN et al., 2022). Embora os valores de CST ndo tenham diferido entre
os tratamentos, vale lembrar que os CST englobam diferentes agucares (mono, di e
oligossacarideos) cujas concentragdes podem estar sendo alteradas de forma compensatoria, ou
seja, a reducdo na concentracdo de um agucar pode ser compensada pelo aumento na
concentragdo de outro (ZIVANOVIC et al., 2020). Nesse contexto, diferengas entre os hibridos
de palma de 6leo sob salinidade foram observadas quanto aos teores foliares de sacarose, a qual
aumentou nas plantas salinizadas apenas do hibrido Manicoré, revelando uma diferenga
genotipica que pode contribuir para uma tolerancia diferencial a salinidade nesses hibridos. Isto
porque a sacarose desempenha multiplas fung¢des durante o estresse salino, atuando na
osmorregulacdo celular, na regulagdo da fotossintese e no suprimento de substrato respiratorio
para os 6rgdos drenos, tendo o aumento de sacarose em plantas salinizadas sido considerado
um marcador de tolerancia a esse estresse (CHICONATO, 2016). Aumentos nos teores de
sacarose sob condi¢cdes de salinidade foram também observados em Solanum lycopersicum
(YIN et al., 2010, GUO et al., 2022) enquanto em Saccharum officinarum houve diminuigao
dos teores de sacarose (DHANSU et al., 2022). Deste modo, diferenca na resposta da sacarose
entre os hibridos pode ser um indicador da capacidade de adaptacdo que cada gendtipo adota
ao estresse salino e, dessa forma, o hibrido Manicoré parece adotar uma estratégia de
acumulagdo de sacarose como mecanismo de resposta ao estresse, o que nao foi observado no

hibrido Tenera.
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5. CONCLUSAO

A salinidade induziu reducao do potencial hidrico foliar sem alteragdes no CRA em ambos
os hibridos, o que indica a ocorréncia de um eficiente ajustamento osmoético mediado pela
salinidade. Esse possivel ajustamento osmotico deve ter sido induzido pelos acimulos foliares
de prolina em ambos os hibridos e dos aumentos nas concentragdes de GB (Tenera) e sacarose
(Manicoré).

Os maiores teores de nitrato € amodnio livres nas folhas das plantas estressadas do hibrido
Tenera indicam uma menor capacidade deste hibrido em converter essas formas de nitrogénio
em compostos organicos nitrogenados, tais como amino acidos, através do ciclo GS/GOGAT,
o que deve ter contribuido para a menor sintese de PST nas plantas salinizadas desse hibrido se
comparado ao comportamento evidenciado pelo hibrido Manicoré.

As diferencas observadas para os dados de status hidrico, compostos nitrogenados e
carboidratos entre hibridos sob condi¢gdes de salinidade ndo permitem inferir sobre uma
diferenca na tolerdncia ao estresse salino entre esses materiais vegetais. Contudo, a maior
capacidade de sintese de PST nas plantas salinizadas do hibrido Manicoré pode ser um indicio
de que este material vegetal possa apresentar outros mecanismos de defesa celular sob
condigdes de estresse, o que devera ser explorado em futuros experimentos que investiguem as

alteragdes no perfil proteico de plantas salinizadas e nao salinizadas.
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